A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer’s Disease: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Synthesis of the RMT-Driven (AEP-Functionalised)-FP Delivery System
2.2. Characterisation of the AEP-Functionalised FP-Delivery System
2.2.1. Mass Spectrometry
2.2.2. Fourier Transform Infra-Red (FTIR)
2.3. Preparation of Cultured Cells
2.3.1. bEnd.3 Cells
2.3.2. Human Umbilical Vein Endothelial Cells
2.3.3. Preparation of C6 Glial Cells
2.4. Cytotoxicity Assays
2.5. Examination of the Drug Delivery System Penetration Across an In Vitro BBB Model
2.6. Quantification of γ-Secretase Enzyme Activity
2.7. Drug Release
2.8. Statistical Analysis
3. Results
3.1. Characterisation of AEP-Functionalised FP-Delivery System
3.2. Cytotoxicity
3.3. Penetration of the Drug Delivery System Across an In Vitro BBB Model
3.4. Quantification of γ-Secretase Enzyme Activity
3.5. Degradation Analysis and Drug Release
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aparicio, J.; Martin, C.; Torres, I. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016, 103, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Wyss, T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016, 539, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A. Drug delivery to the brain in Alzheimer’s disease: Consideration of the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 629–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canter, R.; Penney, J.; Tsai, L. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016, 539, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.M.; Emmerling, M.R.; VigoPelfrey, C.; Kasunic, T.C.; Kirkpatrick, J.B.; Murdoch, G.H.; Ball, M.J.; Roher, A.E. Water-soluble A beta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 1996, 271, 4077–4081. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, J.; Sagi, S.; Smith, T.; Weggen, S.; Das, P.; McLendon, D.; Ozols, V.; Jessing, K.; Zavitz, K.; Koo, E.; et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J. Clin. Investig. 2003, 112, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s Disease: From Pathology to Therapeutic Approaches. Angew. Chem. Int. Ed. 2009, 48, 3030–3059. [Google Scholar] [CrossRef]
- Crump, J.; Johnson, S.; Li, Y. Development and Mechanism of γ-Secretase Modulators for Alzheimer’s Disease. Biochemistry 2013, 52, 3197–3216. [Google Scholar]
- Meister, S.; Zlatev, I.; Stab, J.; Docter, D.; Baches, S.; Stauber, R.; Deutsch, M.; Schmidt, R.; Ropele, S.; Windisch, M.; et al. Nanoparticulate flurbiprofen reduces amyloid-beta42 generation in an in vitro blood-brain barrier model. Alzheimers Res. Ther. 2013, 5, 51. [Google Scholar] [CrossRef]
- Lleo, A.; Berezovska, O.; Herl, L.; Raju, S.; Deng, A.; Bacskai, B.J.; Frosch, M.P.; Irizarry, M.; Hyman, B.T. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat. Med. 2004, 10, 1065–1066. [Google Scholar] [CrossRef]
- McGeer, P.; McGeer, E. NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiol. Aging 2007, 28, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.M. Clinical pharmacokinetics of flurbiprofen and its enantiomers. Clin. Pharmacokinet. 1995, 28, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Schneider, L.; Amato, D.; Beelen, A.; Wilcock, G.; Swabb, E.; Zavitz, K. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA 2009, 302, 2557–2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcock, G.; Black, S.; Hendrix, S.; Zavitz, K.; Swabb, E.; Laughlin, M. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomised phase II trial. Lancet Neurol. 2008, 7, 483–493. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 640–665. [Google Scholar] [CrossRef]
- Khawli, L.A.; Prabhu, S. Drug Delivery across the Blood-Brain Barrier. Mol. Pharm. 2013, 10, 1471–1472. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wu, Y. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics. ACS Chem. Neurosci. 2014, 5, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Al-Azzawi, S.; Masheta, D.; Guildford, A.L.; Phillips, G.; Santin, M. Dendrimeric Poly(Epsilon-Lysine) Delivery Systems for the Enhanced Permeability of Flurbiprofen across the Blood-Brain Barrier in Alzheimer’s Disease. Int. J. Mol. Sci. 2018, 19, 3224. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef]
- Rocha, S. Targeted Drug Delivery Across the Blood Brain Barrier in Alzheimer’s Disease. Curr. Pharm. Des. 2013, 19, 6635–6646. [Google Scholar] [CrossRef] [Green Version]
- Rip, J.; Schenk, G.; de Boer, A. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin. Drug Deliv. 2009, 6, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Tuma, P.; Hubbard, A. Transcytosis: Crossing Cellular Barriers. Physiol. Rev. 2003, 83, 871–932. [Google Scholar] [CrossRef] [PubMed]
- Mager, I.; Meyer, A.; Li, J.; Lenter, M.; Hildebrandt, T.; Leparc, G.; Wood, M. Targeting blood-brain-barrier transcytosis–perspectives for drug delivery. Neuropharmacology 2017, 120, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Boado, R.; Pardridge, W. Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology. Mol. Pharm. 2009, 6, 747–751. [Google Scholar] [CrossRef]
- Cruz, M.; Simoes, S.; Lima, M. Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp. Neurol. 2004, 187, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, G.; Rappuoli, R.; Ratti, G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984, 12, 4063–4069. [Google Scholar] [CrossRef]
- Boer, A.; Gaillard, P. Drug targeting to the brain. Annu. Rev. Pharm. Toxicol. 2007, 47, 323–355. [Google Scholar] [CrossRef]
- Sauer, I.; Nikolenko, H.; Keller, S.; Abu Ajaj, K.; Bienert, M.; Dathe, M. Dipalmitoylation of a cellular uptake-mediating apolipoprotein E-derived peptide as a promising modification for stable anchorage in liposomal drug carriers. Biochim. Biophys. Acta (BBA) Biomembr. 2006, 1758, 552–561. [Google Scholar] [CrossRef] [Green Version]
- Molino, Y.; David, M.; Varini, K.; Jabès, F.; Gaudin, N.; Fortoul, A.; Bakloul, K.; Masse, M.; Bernard, A.; Drobecq, L.; et al. Use of LDL receptor–targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017, 31, 1807–1827. [Google Scholar] [CrossRef]
- Xiao, G.; Gan, L. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics. Int. J. Cell Biol. 2013, 2013, 14. [Google Scholar] [CrossRef] [Green Version]
- Zensi, A.; Begley, D.; Pontikis, C.; Legros, C.; Mihoreanu, L.; Wagner, S.; Büchel, C.; von Briesen, H.; Kreuter, J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release 2009, 137, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Re, F.; Sancini, G.; Cambianica, I.; Sesana, S.; Salvati, E.; Cagnotto, A.; Salmona, M.; Couraud, P.-O.; Moghimi, S.M.; Masserini, M. Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. J. Biotechnol. 2010, 156, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Sauer, I.; Dunay, I.R.; Weisgraber, K.; Bienert, M.; Dathe, M. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry 2005, 44, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, M.; Gasco, P.; Salmona, M.; Masserini, M.E.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; et al. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials 2010, 31, 6519. [Google Scholar] [CrossRef] [PubMed]
- Bana, L.; Minniti, S.; Salvati, E.; Sesana, S.; Zambelli, V.; Cagnotto, A.; Orlando, A.; Cazzaniga, E.; Zwart, R.; Scheper, W.; et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: Implications for therapy of Alzheimer disease. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Datta, G.; Chaddha, M.; Garber, D.W.; Chung, B.H.; Tytler, E.M.; Dashti, N.; Bradley, W.A.; Gianturco, S.H.; Anantharamaiah, G.M. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry 2000, 39, 213–220. [Google Scholar] [CrossRef]
- Re, F.; Cagnotto, A.; Salmona, M.; Masserini, M.; Sancini, G.; Cambianica, I.; Zona, C.; Sesana, S.; Gregori, M.; Rigolio, R.; et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 551–559. [Google Scholar] [CrossRef]
- Dyer, C.; Cistola, D.; Parry, G.; Curtiss, L. Structural features of synthetic peptides of apolipoprotein E that bind the LDL receptor. J. Lipid Res. 1995, 36, 80–88. [Google Scholar]
- Wang, X.; Ciraolo, G.; Morris, R.; Gruenstein, E. Identification of a neuronal endocytic pathway activated by an apolipoprotein E (apoE) receptor binding peptide. Brain Res. 1997, 778, 6–15. [Google Scholar] [CrossRef]
- Al-azzawi, S.; Masheta, D.; Guildford, A.; Phillips, G.; Santin, M. Designing and Characterization of a Novel Delivery System for Improved Cellular Uptake by Brain Using Dendronised Apo-E-Derived Peptide. Front. Bioeng. Biotechnol. 2019, 7, 49. [Google Scholar] [CrossRef]
- Meikle, S.; Perugini, V.; Guildford, A.; Santin, M. Synthesis, characterisation and in vitro anti-angiogenic potential of dendron VEGF blockers. Macromol. Biosci. 2011, 11, 1761–1765. [Google Scholar] [CrossRef] [PubMed]
- Made, V.; Els-Heindl, S.; Beck-Sickinger, A.G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem. 2014, 10, 1197–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, G.B.; Noble, R.L. Solid-Phase Peptide-Synthesis Utilizing 9-Fluorenylmethoxycarbonyl Amino-Acids. Int. J. Pept. Protein Ress. 1990, 35, 161–214. [Google Scholar] [CrossRef] [PubMed]
- Al-azzawi, S. Improving Flurbiprofen Brain-Permeability and Targeting in Alzheimer’s Disease by Using a Novel Dendronised ApoE-Derived Peptide Carrier System. Ph.D. Thesis, University of Brighton, Brighton, UK, 2017. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Wallen, C.A.; Higashikubo, R.; Roti Roti, J.L. Comparison of the cell kill measured by the Hoechst-propidium iodide flow cytometric assay and the colony formation assay. Cell Tissue Kinet 1983, 16, 357–365. [Google Scholar]
- Majno, G.; Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 1995, 146, 3–15. [Google Scholar]
- Teixeira, A.I.; Ribeiro, L.F.; Rezende, S.T.; Barros, E.G.; Moreira, M.A. Development of a method to quantify sucrose in soybean grains. Food Chem. 2012, 130, 1134–1136. [Google Scholar] [CrossRef] [Green Version]
- Downard, K. Mass Spectrometry: A Foundation Course; Royal society of Chemistery: London, UK, 2004. [Google Scholar]
- Jones, A.; Shusta, E. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm. Res. 2007, 24, 1759–1771. [Google Scholar] [CrossRef] [Green Version]
- Dehouck, B.; Dehouck, M.; Fruchart, J.; Cecchelli, R. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: Intercommunications between brain capillary endothelial cells and astrocytes. J. Cell Biol. 1994, 126, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Kim, D.; Chung, W.J.; Lee, Y. Combinatorial solid phase peptide synthesis and bioassays. J. Biochem. Mol. Biol. 2005, 38, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Augustus, E.N.; Allen, E.T.; Nimibofa, A.; Donbebe, W. A Review of Synthesis, Characterization and Applications of Functionalized Dendrimers. Am. J. Polym. Sci. 2017, 7, 8–14. [Google Scholar]
- Srinivas, N.; Anusha, G.; Malath, K.; Preetika, A. Dendrimer—For novel drug delivery system—A review article. Indo. Am. J. Pharm. Sci. 2014, 1, 295–304. [Google Scholar]
- Huang, R.; Ke, W.; Liu, Y.; Jiang, C.; Pei, Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 2008, 29, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Fu, Y.; Kao, W.; Janigro, D.; Yang, H. Transbuccal Delivery of CNS Therapeutic Nanoparticles: Synthesis, Characterization, and In Vitro Permeation Studies. ACS Chem. Neurosci. 2011, 2, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.; Svenson, S. Dendrimers in biomedical applications--reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106–2129. [Google Scholar]
- Prashant, K.; Keerti, J.; Narendra, K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268–307. [Google Scholar]
- Omidi, Y.; Campbell, L.; Barar, J.; Connell, D.; Akhtar, S.; Gumbleton, M. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res. 2003, 990, 95–112. [Google Scholar]
- Brown, R.; Morris, A.; O’Neil, R. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 2007, 1130, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Pachter, S.; Song, L. Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Dev. Biol. Anim. 2003, 39, 313–320. [Google Scholar]
- Pierre, C.; Daniel, S. Biology and Physiology of the Blood-Brain Barrier, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Eigenmann, D.; Xue, G.; Kwang, K.; Moses, A.; Matthias, H.; Oufir, M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS 2013, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Patabendige, A.; Skinner, R.; Morgan, L.; Abbott, N. A detailed method for preparation of a functional and flexible blood–brain barrier model using porcine brain endothelial cells. Brain Res. 2013, 1521, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target 2002, 10, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Rensen, P.; de Vrueh, R.; Kuiper, J.; Bijsterbosch, M.; Biessen, E.; van Berkel, T. Recombinant lipoproteins: Lipoprotein-like lipid particles for drug targeting. Adv. Drug Deliv. Rev. 2001, 47, 251–276. [Google Scholar] [CrossRef]
- Weggen, S.; Eriksen, J.; Sagi, S.; Pietrzik, C.; Ozols, V.; Fauq, A.; Golde, T.; Koo, E. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J. Biol. Chem. 2003, 278, 31831–31837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparini, L.; Rusconi, L.; Xu, H.; del Soldato, P.; Ongini, E. Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J. Neurochem. 2004, 88, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Hamblett, K.; Senter, P.; Chace, D.; Sun, M.; Lenox, J.; Cerveny, C.; Kissler, K.; Bernhardt, S.; Kopcha, A.; Zabinski, R.; et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 2004, 10, 7063–7070. [Google Scholar] [CrossRef] [Green Version]
- Silverman, R.; Holladay, M. Prodrugs and Drug Delivery Systems. In The Organic Chemistry of Drug Design and Drug Action, 3rd ed.; Academic Press: Boston, MA, USA, 2014; pp. 423–468. [Google Scholar]
- Khandare, J.; Kumar, S. Biodegradable Dendrimers and Dendritic Polymers. In Handbook of Biodegradable Polymers; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 237–262. [Google Scholar]
- Souza, A.; Topp, E. Release from polymeric prodrugs: Linkages and their degradation. J. Pharm. Sci. 2004, 93, 1962–1979. [Google Scholar] [CrossRef]
- Al-azzawi, S.; Masheta, D. Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. J. Pharm. Investig. 2019, 49, 643–654. [Google Scholar] [CrossRef]
- Elvira, C.; Gallardo, A.; Roman, J.S.; Cifuentes, A. Covalent polymer-drug conjugates. Molecules 2005, 10, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Boyd, B.; Kaminskas, L.; Karellas, P.; Krippner, G.; Lessene, R.; Porter, C. Cationic poly-L-lysine dendrimers: Pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol. Pharm. 2006, 3, 614–627. [Google Scholar] [CrossRef]
- Neelov, I.; Popova, E. Molecular Dynamics Simulation of Lysine Dendrimer and Oppositely Charged Semax Peptides. Nat. Sci. 2016, 8, 499–510. [Google Scholar]
- Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int. J. Pharm. 2007, 336, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Parepally, J.; Mandula, H.; Smith, Q. Brain uptake of nonsteroidal anti-inflammatory drugs: Ibuprofen, flurbiprofen, and indomethacin. Pharm. Res. 2006, 23, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Biswas, G.; Kim, W.; Kim, K.-T.; Cho, J.; Jeong, D.; Song, K.-H.; Im, J. Synthesis of Ibuprofen Conjugated Molecular Transporter Capable of Enhanced Brain Penetration. J. Chem. 2017, 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Dave, N.; Hu, J.; Desai, P.; Pauletti, G.; Bai, S.; Hao, J. Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro. J. Microencapsul. 2013, 30, 701–708. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z. Advanced drug delivery systems: Nanotechnology of health design A review. J. Saudi Chem. Soc. 2014, 18, 85–99. [Google Scholar] [CrossRef]
- Cheng, Y.; Man, N.; Xu, T.; Fu, R.; Wang, X.; Wang, X.; Wen, L. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 2007, 96, 595–602. [Google Scholar]
Time | Readings | % Sucrose Permeability (Mean ± SD) | ||
---|---|---|---|---|
Membrane | HUVEC | bEnd.3 | ||
15 min | 4 | 44.7 ± 4.1 | 19.6 ± 2.7 | 6.2 ± 1.4 |
30 min | 4 | 46.8 ± 3.6 | 32.2 ± 3.2 | 9.4 ± 1.8 |
Factor | Readings | Mean ± SD pg/mL | P-Value to FP | P-Value to Control |
---|---|---|---|---|
Control | 6 | 28.43 ± 8.32 | < 0.05 | |
FP | 6 | 8.20 ± 3.80 | ||
AEP-K-FP | 6 | 14.60 ± 3.51 | < 0.05 | < 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-azzawi, S.; Masheta, D.; Guildford, A.; Phillips, G.; Santin, M. A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer’s Disease: An In Vitro Study. Nanomaterials 2020, 10, 1590. https://doi.org/10.3390/nano10081590
Al-azzawi S, Masheta D, Guildford A, Phillips G, Santin M. A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer’s Disease: An In Vitro Study. Nanomaterials. 2020; 10(8):1590. https://doi.org/10.3390/nano10081590
Chicago/Turabian StyleAl-azzawi, Shafq, Dhafir Masheta, Anna Guildford, Gary Phillips, and Matteo Santin. 2020. "A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer’s Disease: An In Vitro Study" Nanomaterials 10, no. 8: 1590. https://doi.org/10.3390/nano10081590
APA StyleAl-azzawi, S., Masheta, D., Guildford, A., Phillips, G., & Santin, M. (2020). A Peptide-Based Nanocarrier for an Enhanced Delivery and Targeting of Flurbiprofen into the Brain for the Treatment of Alzheimer’s Disease: An In Vitro Study. Nanomaterials, 10(8), 1590. https://doi.org/10.3390/nano10081590