Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects Tested
2.2. Nettings and Dust Formulations
2.3. Bioassay Series
2.3.1. Short-Term Effect
2.3.2. Long-Term Effect
2.4. Statistical Analysis
3. Results
3.1. Short-Term Effect
3.2. Long-Term Effect
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.-G.; Kavallieratos, N.-G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2017, 91, 1–15. [Google Scholar] [CrossRef]
- Awolola, T.-S.; Adeogun, A.; Olakiigbe, A.-K.; Oyeniyi, T.; Olukosi, Y.-A.; Okoh, H.; Arowolo, T.; Akila, J.; Oduola, A.; Amajoh, C.-N. Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS ONE 2018, 13, e0205230. [Google Scholar] [CrossRef] [Green Version]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Knoch, S.; Chouinard, G.; Tavares, J.-R.; Dumont, M.-J. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019, 180, 121–145. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Bartzanas, T.; Mermier, M.; Boulard, T. The impact of insect screens and ventilation openings on the greenhouse microclimate. Trans. ASABE 2008, 51, 2151–2165. [Google Scholar] [CrossRef]
- Kitta, E.; Baille, A.-D.; Katsoulas, N.; Rigakis, N.; González-Real, M.-M. Effects of cover optical properties on screenhouse radiative environment and sweet pepper productivity. Biosyst. Eng. 2014, 122, 115–126. [Google Scholar] [CrossRef]
- Teitel, M. The effect of screened openings on greenhouse microclimate. Agric. For. Meteorol. 2007, 143, 159–175. [Google Scholar] [CrossRef]
- Dáder, B.; Legarrea, S.; Moreno, A.; Ambros, C.-M.; Fereres, A.; Skovmand, O.; Bosselmann, R.; Viñuela, E. Insecticide-treated nets as a new approach to control vegetable pests in protected crops. Acta Hortic. 2014, 1015, 103–112. [Google Scholar] [CrossRef]
- Rigakis, N.; Katsoulas, N.; Teitel, M.; Bartzanas, T.; Kittas, C. A simple model for ventilation rate determination in screenhouses. Energy Build. 2015, 87, 293–301. [Google Scholar] [CrossRef]
- Bell, M.-L.; Baker, J.-R. Comparison of greenhouse screening materials for excluding whitefly (Homoptera: Aleyrodidae) and thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 2000, 93, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.-P.; Baeza, E.; Montero, J.-I.; Bailey, B.-J. Natural ventilation of parral greenhouses. Biosyst. Eng. 2004, 87, 355–366. [Google Scholar] [CrossRef]
- Fatnassi, H.; Boulard, T.; Demrati, H.; Bouirden, L.; Sappe, G. Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets. Biosyst. Eng. 2002, 82, 97–105. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bartzanas, T.; Boulard, T.; Mermier, M.; Kittas, C. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst. Eng. 2006, 93, 427–436. [Google Scholar] [CrossRef]
- Baeza, E.-J.; Pérez-Parra, J.-J.; Montero, J.-I.; Bailey, B.-J.; López, J.-C.; Gázquez, J.-C. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Cormier, D. Impact of exclusion netting row covers on arthropod presence and crop damage to ‘Honeycrisp’ apple trees in North America: A five-year study. Crop Prot. 2017, 98, 248–254. [Google Scholar] [CrossRef]
- Rumbos, C.-I.; Sakka, M.; Schaffert, S.; Sterz, T.; Austin, J.-W.; Bozoglou, C.; Klitsinaris, P.; Athanassiou, C.-G. Evaluation of Carifend®, an alpha-cypermethrin-coated polyester net, for the control of Lasioderma serricorne and Ephestia elutella in stored tobacco. J. Pest Sci. 2018, 91, 751–759. [Google Scholar] [CrossRef]
- Dáder, B.; Legarrea, S.; Moreno, A.; Plaza, M.; Carmo-Sousa, M.; Amor, F.; Viñuela, E.; Fereres, A. Control of insect vectors and plant viruses in protected crops by novel pyrethroid-treated nets. Pest Manag. Sci. 2014, 71, 1397–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthurs, S.-P.; Krauter, P.-C.; Gilder, K.; Heinz, K.-M. Evaluation of deltamethrin-impregnated nets as a protective barrier against Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) under laboratory and greenhouse conditions. Crop Prot. 2018, 112, 227–231. [Google Scholar] [CrossRef]
- Paloukas, Y.-Z.; Agrafioti, P.; Rumbos, C.-I.; Schaffert, S.; Sterz, T.; Bozoglou, C.; Klitsinaris, P.; Austin, J.-W.; Athanassiou, C.-G. Evaluation of Carifend® for the control of stored-product beetles. J. Stored Prod. Res. 2020, 85. [Google Scholar] [CrossRef]
- Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 1994, 91, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, A.; Tripathi, D.-K.; Yadav, S.; Chauhan, D.-K.; Živčák, M.; Ghorbanpour, M.; El-Sheery, N.-I.; Brestic, M. Application of silicon nanoparticles in agriculture. 3 Biotech 2019, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debnath, N.; Mitra, S.; Das, S.; Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 2012, 221, 252–256. [Google Scholar] [CrossRef]
- Barik, T.-K.; Sahu, B.; Swain, V. Nanosilica—From medicine to pest control. Parasitol. Res. 2008, 103, 253–258. [Google Scholar] [CrossRef]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 25, 12329–12341. [Google Scholar] [CrossRef]
- Vayias, B.-J.; Athanassiou, C.-G. Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum DuVal (Coleoptera: Tenebrionidae). Crop Prot. 2004, 23, 565–573. [Google Scholar] [CrossRef]
- Ng, J.C.-K.; Perry, K.-L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef]
- Singh, B.; Singh, V. Laboratory and field studies demonstrating the insecticidal potential of diatomaceous earth against wheat aphids in rice-wheat cropping system of Punjab (India). Cereal Res. Commun. 2016, 44, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Shoaib, A.; Elabasy, A.; Waqas, M.; Lin, L.; Cheng, X.; Zhang, Q.; Shi, Z.H. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol. Environ. Chem. 2018, 100, 80–91. [Google Scholar] [CrossRef]
- Debnath, N.; Das, S.; Seth, D.; Chandra, R.; Bhattacharya, S.-C.; Goswami, A. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 2011, 84, 99–105. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.-G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.-E.; Martinou, A.-F.; Kontodimas, D.-C.; Matsinos, Y.-G.; Milonas, P.-G. Functional responses of immature stages of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) to Aphis fabae (Hemiptera: Aphididae). Eur. J. Entomol. 2011, 108, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Faliagka, S.; Agrafioti, P.; Lampiri, E.; Katsoulas, Ν.; Athanassiou, C.G. Assessment of different inert dust formulations for the control of Sitophilus oryzae, Tribolium confusum and Aphis fabae. Crop Prot. 2020, 137, 105312. [Google Scholar] [CrossRef]
- Kavallieratos, N.-G.; Athanassiou, C.-G.; Vayias, B.-J.; Kotzamanidis, S.; Synodis, S.-D. Efficacy and adherence ratio of diatomaceous earth and spinosad in three wheat varieties against three stored-prosuct insect pests. J. Stored Prod. Res. 2010, 46, 73–80. [Google Scholar] [CrossRef]
- Kavallieratos, N.-G.; Athanassiou, C.-G.; Mpassoukou, A.-E.; Mpakou, F.-D.; Tomanovic, Z.; Manessioti, T.-B.; Papadopoulou, S.-C. Bioassays with diatomaceous earth formulations: Effect of species co-occurrenece, size of vials and application technique. J. Stored Prod. Res. 2012, 42, 170–179. [Google Scholar] [CrossRef]
- Athanassiou, C.-G.; Kavallieratos, N.-G.; Andris, N.-S. Insecticide effect of three diatomaceous earth formulations against adults of Sitophlus oryzae (Coleoptera: Curcilionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) on oat, rye and triticale. J. Econ. Entomol. 2004, 97, 2160–2167. [Google Scholar] [CrossRef]
- Athanassiou, C.-G.; Vassilakos, N.-T.; Dutton, A.-C.; Jeesop, N.; Sherwood, D.; Pease, G.; Brglez, A.; Storm, C.; Trdan, S. Combining electrostatic powder with an insecticide: Effect on stored prosuct beetles and on the commodity. Pest Manag. Sci. 2016, 72, 2208–2217. [Google Scholar] [CrossRef]
- Vayias, B.-J.; Athanassiou, C.-G.; Korunic, Z.; Rozman, V. Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: The effect of particle size. Pest Manag. Sci. 2009, 65, 1118–1123. [Google Scholar] [CrossRef]
- Rumbos, C.-I.; Sakka, M.; Berillis, P.; Athanassiou, C.-G. Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res. 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Korunić, Z. Rapid assessment of the insecticidal value of diatomaceous earths without conducting bioassays. J. Stored Prod. Res. 1997, 33, 219–229. [Google Scholar] [CrossRef]
- Peng, D.-X.; Kang, Y.; Hwang, R.-M.; Shyr, S.-S.; Chang, Y.-P. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol. Int. 2009, 42, 911–917. [Google Scholar] [CrossRef]
- Kavallieratos, N.-G.; Athanassiou, C.-G.; Korunic, Z.; Mikeli, N.-H. Evaluations of three novel diatomaceous earths against three stored-grain beetle species on wheat and maize. Crop Prot. 2015, 75, 132–138. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Springer: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar]
- Athanassiou, C.-G.; Vayias, B.-J.; Dimizas, C.-B.; Kavallieratos, N.-G.; Papagregoriou, A.-S.; Buchelos, C.-T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
Sample | Mesh Size | Silica Particles Diameter (μm) | Coating Repetition | Mass of Deposited Silica Particles on the Surface of the Net (g × m−2) |
---|---|---|---|---|
ED3 | 50 mesh | 5.8 | 2 | 0.4 |
ED3-P | 50 mesh | 5.8 | 2 | 0.7 |
ED5 | 50 mesh | 9.0 | 2 | 0.7 |
ED5-P | 50 mesh | 9.0 | 2 | 0.9 |
# | Nets | KDt50 | KDt95 | KDt99 | Slope ± SE | X2 | P |
---|---|---|---|---|---|---|---|
A. fabae | ED3 | 253.3 a | 980.2 a | 1281.4 a | 2.7 ± 0.1 | 389.8 | <0.01 |
ED3-P | 279.7 a | 1206.8 a | 1590.9 a | 2.1 ± 0.1 | 290.9 | <0.01 | |
ED5 | 51.3 a | 669.6 a | 925.8 a | 3.3 ± 0.1 | 561.7 | <0.01 | |
ED5-P | 74.9 (49.8—109.1) | 278.8 (206.6—465.8) | 363.3 (265.6—619.5) | 9.6 ± 0.1 | 372.8 | <0.01 | |
# | Nets | KDt50 | KDt95 | KDt99 | Slope ± SE | X2 | P |
S. oryzae | ED3 | - | - | - | - | - | - |
ED3-P | 767.3 a | 1098.5 a | 1235.7 a | 0.6 ± 0.1 | 449.7 | <0.01 | |
ED5 | - | - | - | - | - | - | |
ED5-P | - | - | - | - | - | - |
ED3 | ED3-P | ED5 | ED5-P | Untreated net | Without net | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Short term | Long term | Short term | Long term | Short term | Long term | Short term | Long term | Short term | Long term | Short term | Long term | |||||||
Exposure time | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality |
15 min | 0.0 ± 0.0 a | 0.0± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 2.5 ± 2.5 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 20.0 ± 3.2 B | 36.2 ± 8.6 B |
30 min | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 22.5 ± 13.1 B | 12.5 ± 3.1 B |
60 min | 27.5 ± 4.5 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 22.5 ± 3.1 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 28.7 ± 3.9 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 15.0 ± 4.6 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 B | 0.0 ± 0.0 A | 93.7 ± 4.1 A | 0.0 ± 0.0 B | 16.2 ± 4.6 B | 23.7 ± 6.7 B |
F | 36.8 | - | - | 51.5 | - | - | 52.1 | - | - | 10.5 | - | - | - | 1.0 | 2.2 | - | 0.1 | 3.2 |
P | <0.01 | - | - | <0.01 | - | - | <0.01 | - | - | <0.01 | - | - | - | 0.38 | 0.13 | - | 0.86 | 0.06 |
ED3 | ED3-P | ED5 | ED5-P | Untreated Net | Without Net | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposure time (d) | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th |
15 min | 2.5 ± 1.6 | 100.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 97.5 ± 2.5 A | 98.7 ± 1.2 A | 0.0 ± 0.0 | 100.0 ± 0.0 aA | 100.0 ± 0.0 aA | 5.0 ± 1.8 | 100.0 ± 0.0 bA | 100.0 ± 0.0 aA | 6.2 ± 4.1 | 40.0 ± 8.4 B | 56.2 ± 9.0 B | 0.0 ± 0.0 | 0.0 ± 0.0 C | 11.2 ± 2.2 C |
30 min | 3.7 ± 1.8 | 97.5 ± 2.5 A | 100.0 ± 0.0 A | 5.0 ± 1.8 | 97.5 ± 1.6 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 96.2 ± 1.8 bA | 96.2 ± 1.8 bA | 3.7 ± 2.6 | 97.5 ± 2.5 abA | 100.0 ± 0.0 aA | 2.5 ± 1.6 | 22.5 ± 10.6 B | 30.0 ± 11.0 B | 0.0 ± 0.0 | 0.0 ± 0.0 C | 11.2 ± 2.9 C |
60 min | 2.5 ± 1.6 | 98.7 ± 1.2 A | 100.0 ± 0.0 A | 3.7 ± 1.8 | 100.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 100.0 ± 0.0 aA | 100.0 ± 0.0 aA | 0.0 ± 0.0 | 87.5 ± 5.2 aA | 88.7 ± 5.4 bA | 2.5 ± 2.5 | 43.7 ± 9.9 B | 56.2 ± 9.8 B | 0.0 ± 0.0 | 0.0 ± 0.0 C | 12.5 ± 3.1 C |
F | 0.8 | 0.6 | - | 2.9 | 0.7 | 1.0 | - | 4.2 | 4.2 | 1.9 | 3.9 | 4.2 | 0.5 | 1.3 | 2.3 | - | - | 0.1 |
P | 0.83 | 0.55 | - | 0.07 | 0.50 | 0.38 | - | 0.02 | 0.02 | 0.16 | 0.03 | 0.02 | 0.59 | 0.27 | 0.12 | - | - | 0.93 |
ED3 | ED3-P | ED5 | ED5-P | Untreated net | Without Net | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposure time (d) | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th |
15 min | 3.7 ± 2.6 | 12.5 ± 3.1 ab | 13.7 ± 3.2 | 1.2 ± 1.2 a | 8.7 ± 4.4 a | 18.7 ± 3.5 | 2.5 ± 1.6 ab | 13.7 ± 4.1 | 28.7 ± 2.9 a | 2.5 ± 1.6 | 11.2 ± 4.7 ab | 18.7 ± 5.4 ab | 6.2 ± 2.6 | 5.0 ± 1.8 | 16.2 ± 3.7 | 0.0 ± 0.0 | 3.7 ± 2.6 | 28.7 ± 5.1 |
30 min | 0.0 ± 0.0 | 7.5 ± 2.5 aA | 12.5 ± 3.6 | 2.5 ± 1.6 ab | 18.7 ± 3.5 abB | 20.0 ± 3.7 | 0.0 ± 0.0 a | 6.2 ± 2.6 A | 8.7 ± 2.2 b | 0.0 ± 0.0 | 8.7 ± 2.2 aAB | 11.2 ± 1.2 a | 2.5 ± 2.5 | 7.5 ± 2.5 A | 18.7 ± 6.3 | 0.0 ± 0.0 | 1.2 ± 1.2 A | 21.2 ± 3.5 |
60 min | 6.2 ± 1.8 B | 20.0 ± 4.2 bAB | 22.5 ± 3.6 | 7.5 ± 1.6 bB | 30.0 ± 5.3 bB | 32.5 ± 5.2 | 7.5 ± 2.5 bB | 16.2 ± 3.7 AB | 25.0 ± 3.7 a | 3.7 ± 1.8 AB | 26.5 ± 6.5 bB | 33.7 ± 7.0 b | 3.7 ± 1.8 AB | 6.2 ± 3.2 A | 15.0 ± 4.2 | 0.0 ± 0.0A | 2.5 ± 1.6 A | 22.5 ± 3.1 |
F | 2.9 | 3.5 | 2.4 | 4.7 | 5.6 | 3.2 | 4.9 | 2.1 | 12.0 | 1.8 | 3.8 | 4.8 | 0.7 | 0.2 | 0.1 | - | 0.4 | 1.0 |
P | 0.07 | 0.04 | 0.11 | 0.02 | 0.01 | 0.06 | 0.01 | 0.14 | 0.01 | 0.18 | 0.03 | 0.01 | 0.52 | 0.79 | 0.86 | - | 0.66 | 0.38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrafioti, P.; Faliagka, S.; Lampiri, E.; Orth, M.; Pätzel, M.; Katsoulas, N.; Athanassiou, C.G. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials 2020, 10, 1658. https://doi.org/10.3390/nano10091658
Agrafioti P, Faliagka S, Lampiri E, Orth M, Pätzel M, Katsoulas N, Athanassiou CG. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials. 2020; 10(9):1658. https://doi.org/10.3390/nano10091658
Chicago/Turabian StyleAgrafioti, Paraskevi, Sofia Faliagka, Evagelia Lampiri, Merle Orth, Mark Pätzel, Nikolaos Katsoulas, and Christos G. Athanassiou. 2020. "Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum" Nanomaterials 10, no. 9: 1658. https://doi.org/10.3390/nano10091658
APA StyleAgrafioti, P., Faliagka, S., Lampiri, E., Orth, M., Pätzel, M., Katsoulas, N., & Athanassiou, C. G. (2020). Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials, 10(9), 1658. https://doi.org/10.3390/nano10091658