Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Situ Fabrication of C-nZnO composites
2.3. Extraction of Solid Powder
2.4. Characterization of nZnO and C-nZnO Composites
2.5. Antimicrobial Evaluation
2.6. Ultraviolet Protection Factor (UPF)
2.7. Leaching Durability and Washing Stability
2.8. Tensile Strength
3. Results and Discussion
3.1. SEM and EDX Analysis
3.2. XRD Pattern
3.3. ICP-AES Analysis
3.4. Sonochemical Synthesis and Deposition (Coating) of nZnO on Cotton
3.5. UPF
3.6. Photooxidative Mechanism
3.7. Antimicrobial Activity
3.7.1. Qualitative Method
3.7.2. Quantitative Method
3.8. Durability against Leaching
3.9. Washing Stability
3.10. Tensile Strength of C-nZnO composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nie, X.; Wu, S.; Mensah, A.; Wang, Q.; Huang, F.; Li, D.; Wei, Q. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy. J. Colloid Interface Sci. 2020, 579, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Montaser, A.; Rehan, M.; El-Senousy, W.; Zaghloul, S. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydr. Polym. 2020, 244, 116479. [Google Scholar] [CrossRef] [PubMed]
- Jabli, M.; Al-Ghamdi, Y.O.; Sebeia, N.; Almalki, S.G.; Alturaiki, W.; Khaled, J.M.; Mubarak, A.S.; Algethami, F.K. Green synthesis of colloid metal oxide nanoparticles using Cynomorium coccineum: Application for printing cotton and evaluation of the antimicrobial activities. Mater. Chem. Phys. 2020, 249, 123171. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Ma, Y.; Du, X.; Shi, Y.; Li, J.; Shi, J. Fabrication of superwetting, antimicrobial and conductive fibrous membranes for removing/collecting oil contaminants. RSC Adv. 2020, 10, 21636–21642. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Jamshaid, H.; Ali, A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018, 19, 2268–2277. [Google Scholar] [CrossRef]
- Willers, C.; Wentzel, J.F.; Du Plessis, L.H.; Gouws, C.; Hamman, J.H. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: The role of efflux inhibitors. Expert Opin. Ther. Targets 2017, 21, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Delezuk, J.A.; Ramírez-Herrera, D.E.; de Ávila, B.E.-F.; Wang, J. Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 2017, 9, 2195–2200. [Google Scholar] [CrossRef]
- Hassan, M.M. Binding of a quaternary ammonium polymer-grafted-chitosan onto a chemically modified wool fabric surface: Assessment of mechanical, antibacterial and antifungal properties. RSC Adv. 2015, 5, 35497–35505. [Google Scholar] [CrossRef]
- Malini, M.; Thirumavalavan, M.; Yang, W.-Y.; Lee, J.-F.; Annadurai, G. A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int. J. Biol. Macromol. 2015, 80, 121–129. [Google Scholar] [CrossRef]
- Sathiya, S.; Okram, G.; Dhivya, S.M.; Manivannan, G.; Rajan, M.J. Interaction of Chitosan/Zinc Oxide Nanocomposites and their Antibacterial Activities with Escherichia coli. Mater. Today Proc. 2016, 3, 3855–3860. [Google Scholar] [CrossRef]
- Jennings, M.C.; Minbiole, K.P.; Wuest, W.M. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, W.; Li, J.; Wang, K.; Li, J.; Tan, H.; Fu, Q. Gemini quaternary ammonium salt waterborne biodegradable polyurethanes with antibacterial and biocompatible properties. Mater. Chem. Front. 2017, 1, 361–368. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, J.; Yang, X.; Liu, H.; Xu, X.; Ma, L.; Shang, S.; Song, Z. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int. J. Biol. Macromol. 2020, 150, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Gu, J.; Liu, X.; Wei, D.; Zhou, H.; Xiao, H.; Zhang, Z.; Yu, H.; Chen, S. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Mater. Sci. Eng C 2020, 111, 110855. [Google Scholar] [CrossRef]
- Iyigundogdu, Z.U.; Demir, O.; Asutay, A.B.; Sahin, F. Developing novel antimicrobial and antiviral textile products. Appl. Biochem. Biotechnol. 2017, 181, 1155–1166. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, J.; Ji, D.; Qin, X.; Ge, Y.; Xie, S. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns. Fibers Polym. 2017, 18, 987–992. [Google Scholar] [CrossRef]
- Abadi, P.G.-S.; Shirazi, F.H.; Joshaghani, M.; Moghimi, H.R. Ag+-promoted zinc oxide [Zn (O): Ag]: A novel structure for safe protection of human skin against UVA radiation. Toxicol. Vitr. 2018, 50, 318–327. [Google Scholar] [CrossRef]
- Attia, N.F.; Moussa, M.; Sheta, A.M.; Taha, R.; Gamal, H. Synthesis of effective multifunctional textile based on silica nanoparticles. Prog. Org. Coat. 2017, 106, 41–49. [Google Scholar] [CrossRef]
- Ghayempour, S.; Montazer, M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 2017, 34, 458–465. [Google Scholar] [CrossRef]
- Milošević, M.; Krkobabić, A.; Radoičić, M.; Šaponjić, Z.; Radetić, T.; Radetić, M. Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydr. Polym. 2017, 158, 77–84. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Shen, R.; Wang, Q.; Vasquez, Y. ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega 2018, 3, 6330–6338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D.M.; Sun, J.; Fan, M. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J. Hazard. Mater. 2020, 123017. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Wiener, J.; Farooq, A.; Saskova, J.; Noman, M.T. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018, 19, 1735–1746. [Google Scholar] [CrossRef]
- Ali, A.; Nguyen, N.H.; Baheti, V.; Ashraf, M.; Militky, J.; Mansoor, T.; Noman, M.T.; Ahmad, S. Electrical conductivity and physiological comfort of silver coated cotton fabrics. J. Text. Inst. 2018, 109, 620–628. [Google Scholar] [CrossRef]
- Rakhshaei, R.; Namazi, H.; Hamishehkar, H.; Kafil, H.S.; Salehi, R. In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J. Appl. Polym. Sci. 2019, 136, 47590. [Google Scholar] [CrossRef]
- Maleki, A.; Safari, M.; Rezaee, R.; Cheshmeh Soltani, R.D.; Shahmoradi, B.; Zandsalimi, Y. Photocatalytic degradation of humic substances in the presence of ZnO nanoparticles immobilized on glass plates under ultraviolet irradiation. Sep. Sci. Technol. 2016, 51, 2484–2489. [Google Scholar] [CrossRef]
- Salehi, K.; Daraei, H.; Teymouri, P.; Shahmoradi, B.; Maleki, A. Cu-doped ZnO nanoparticle for removal of reactive black 5: Application of artificial neural networks and multiple linear regression for modeling and optimization. Desalin. Water Treat. 2016, 57, 22074–22080. [Google Scholar] [CrossRef]
- Noman, M.T.; Petru, M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega 2020, 5, 11481–11490. [Google Scholar] [CrossRef]
- Noman, M.T.; Petru, M.; Militký, J.; Azeem, M.; Ashraf, M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Material 2020, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Noman, M.T.; Wiener, J.; Saskova, J.; Ashraf, M.A.; Vikova, M.; Jamshaid, H.; Kejzlar, P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018, 40, 41–56. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019, 26, 3262–3291. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.T.; Militky, J.; Wiener, J.; Saskova, J.; Ashraf, M.A.; Jamshaid, H.; Azeem, M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics 2018, 83, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Shateri-Khalilabad, M.; Yazdanshenas, M.E. Bifunctionalization of cotton textiles by ZnO nanostructures: Antimicrobial activity and ultraviolet protection. Text. Res. J. 2013, 83, 993–1004. [Google Scholar] [CrossRef]
- Pandiyarasan, V.; Suhasini, S.; Archana, J.; Navaneethan, M.; Majumdar, A.; Hayakawa, Y.; Ikeda, H. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Appl. Surf. Sci. 2017, 418, 352–361. [Google Scholar] [CrossRef]
- Ran, J.; He, M.; Li, W.; Cheng, D.; Wang, X. Growing ZnO nanoparticles on polydopamine-templated cotton fabrics for durable antimicrobial activity and UV protection. Polymers 2018, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; He, Y.; Sen, B.; Wang, G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour. Technol. 2020, 307, 123234. [Google Scholar] [CrossRef]
Sample Name | ZnCl2 [g] | Reaction Time [min] | Horn Intensity [%] | nZnO Deposited Amount [wt %] | nZnO Deposited Amount [ppm] | Particle Size [nm] | UPF |
---|---|---|---|---|---|---|---|
Untreated | - | 60 | 50 | - | - | - | 2 |
C-nZnO 1 | 10 | 60 | 50 | 2.2 | 348 | 26.8 | 216 |
C-nZnO 2 | 10 | 60 | 70 | 1.7 | 283 | 27.2 | 189 |
C-nZnO 3 | 10 | 120 | 50 | 4.9 | 439 | 27.5 | 165 |
C-nZnO 4 | 10 | 120 | 70 | 4.3 | 405 | 27.3 | 112 |
C-nZnO 5 | 20 | 60 | 50 | 11.1 | 855 | 27.2 | 96 |
C-nZnO 6 | 20 | 60 | 70 | 7.8 | 608 | 28.2 | 74 |
C-nZnO 7 | 20 | 120 | 50 | 22.2 | 1372 | 27.3 | 101 |
C-nZnO 8 | 20 | 120 | 70 | 16.7 | 1025 | 28.1 | 76 |
Sr. No. | Coating Method | UPF | Reference |
---|---|---|---|
1 | Wet chemical | 106 | [33] |
2 | Two-step solvothermal | 183 | [34] |
3 | Hydrothermal | 158 | [35] |
C-nZnO 1 | Sonochemical | 216 | Present work |
C-nZnO 2 | Sonochemical | 189 | Present work |
C-nZnO 3 | Sonochemical | 165 | Present work |
Sample Name | Qualitative Test | Quantitative Test | ||
---|---|---|---|---|
S. aureus | E. coli | S. aureus | E. coli | |
Halos Diameter [mm] | Halos Diameter [mm] | Reduction Percentage [%] | Reduction Percentage [%] | |
C-nZnO 1 | 6.2 ± 0.3 | 5.9 ± 0.7 | 100 | 98 |
C-nZnO 2 | 5.4 ± 0.1 | 5.3 ± 0.4 | 99 | 98 |
C-nZnO 3 | 5.6 ± 0.6 | 5.4 ± 0.5 | 98 | 97 |
C-nZnO 4 | 5.1 ± 0.1 | 4.7 ± 0.1 | 98 | 97 |
C-nZnO 5 | 5.5 ± 0.5 | 5.7 ± 0.3 | 100 | 98 |
C-nZnO 6 | 4.8 ± 0.3 | 4.4 ± 0.2 | 98 | 96 |
C-nZnO 7 | 4.1 ± 0.4 | 3.9 ± 0.5 | 97 | 96 |
C-nZnO 8 | 3.4 ± 0.6 | 3.1 ± 0.8 | 97 | 96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noman, M.T.T.; Petrů, M. Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials 2020, 10, 1661. https://doi.org/10.3390/nano10091661
Noman MTT, Petrů M. Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials. 2020; 10(9):1661. https://doi.org/10.3390/nano10091661
Chicago/Turabian StyleNoman, Muhammad Tayyab Tayyab, and Michal Petrů. 2020. "Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites" Nanomaterials 10, no. 9: 1661. https://doi.org/10.3390/nano10091661
APA StyleNoman, M. T. T., & Petrů, M. (2020). Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials, 10(9), 1661. https://doi.org/10.3390/nano10091661