Synthesis of Two-Dimensional Sr-Doped LaNiO3 Nanosheets with Improved Electrochemical Performance for Energy Storage
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Porous La1-xSrxNiO3-δ Nanomaterials
2.2. Materials Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, J.R.; Simon, P. MATERIALS SCIENCE: Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Yang, B.; Li, K.; Wang, H.; Lv, X.; Guo, Y.; Zhang, Z.; Su, Y. Freestanding 3D mesoporous graphene oxide for high performance energy storage applications. RSC Adv. 2014, 4, 51640–51647. [Google Scholar] [CrossRef]
- Li, F.H.; Xu, X.Y.; Xia, F.L.; Zhang, L.; Wu, T.; Li, S.L.; Wang, W. Reduction of Graphene Oxide with Ni Powder for the Prep-aration of Ni(OH)2/Reduced Graphene Oxide Hybrid Electrodes for Supercapacitors. Sci. Adv. Mater. 2015, 7, 269–277. [Google Scholar] [CrossRef]
- Guo, M.; Balamurugan, J.; Thanh, T.D.; Kim, N.H.; Lee, J.H. Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 17560–17571. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Zhao, G.; Chen, J.Y. Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors. J. Mater. Sci. 2017, 52, 478–488. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Y.; Jiao, T.; Zhou, J.; Cheng, J.; Liu, B.; Yang, S.; Zhang, K.; Zhang, W. An Aqueous Zn-Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80,000 Cycles. Adv. Energy Mater. 2019, 9, 1902915. [Google Scholar] [CrossRef]
- Wang, J.-G.; Zhang, Z.; Zhang, X.; Yin, X.; Li, X.; Liu, X.; Kang, F.; Wei, B. Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 2017, 39, 647–653. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Zhu, W.; Lian, J.; Huangbc, Y.; Yu, Y.; Qiu, J.; Li, H.; Yong, Y.-C.; Li, H. Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 693–703. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhang, L.; Hu, Z.; Yu, L.; Jiang, T.; Lu, C.; Yan, C.; Sun, J.; Liu, Z. Caging Nb2O5 Nanowires in PECVD-Derived Graphene Capsules toward Bendable Sodium-Ion Hybrid Supercapacitors. Adv. Mater. 2018, 30, e1800963. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X.; Tervoort, E.; Zeng, G.; Liu, T.; Chen, X.; Sologubenko, A.; Niederberger, M. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors. ACS Nano 2018, 12, 2753–2763. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Liu, X.; Shi, S.; Zhao, X.; Zhang, H.; Ge, X.; Cai, G.; Gu, C.; Wang, X.; et al. One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim. Acta 2014, 116, 467–474. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Y.; Dong, H.; Zhao, X.; Xiao, Y.; Liang, Y.; Hu, H.; Liu, Y.; Zheng, M. Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors. J. Power Sources 2017, 353, 260–269. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Ha, J.S. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Adv. Mater. 2012, 24, 5166–5180. [Google Scholar] [CrossRef]
- Feng, Z.F.; Wu, H.H.; Li, Z.K.; Yang, B.C.; Peer, N.; Zhang, W.Y. A comparative study of graphene oxide affecting the nanoarchitecture and electrochemical properties of urchin-shape nickel cobalt oxide. Vacuum 2017, 137, 125–136. [Google Scholar]
- Wei, Y.; Chen, S.; Su, D.; Sun, B.; Zhu, J.; Wang, G. 3D mesoporous hybrid NiCo2O4@graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. J. Mater. Chem. A 2014, 2, 8103–8109. [Google Scholar] [CrossRef]
- Heidari, E.K.; Zhang, B.; Sohi, M.H.; Ataie, A.; Kim, J.K. Sandwich-structured graphene-NiFe2O4-carbon nanocomposite anodes with exceptional electrochemical performance for Li ion batteries. J. Mater. Chem. A 2014, 2, 8314–8322. [Google Scholar] [CrossRef]
- Zhou, D.H.; Liu, S.Q.; Wang, H.Y.; Yan, G.Q. Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous re-chargeable lithium battery with good cycling performance. J. Power Sources 2013, 227, 111–117. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Meng, D.H.; Wang, C.J.; Diao, G.W. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with en-hanced capacitance property. ACS Appl. Mater. Interfaces 2013, 5, 6030–6037. [Google Scholar] [CrossRef]
- Yu, X.Z.; Lu, B.A.; Xu, Z. Super Long-Life Supercapacitors Based on the Construction of Nanohoneycomb-Like Strongly Coupled CoMoO4-3D Graphene Hybrid Electrodes. Adv. Mater. 2014, 26, 1044–1051. [Google Scholar] [CrossRef]
- Ali, S.M.; Al-Rahman, Y.M.A. Catalytic Activity of LaBO3 for OER in HClO4 Medium: An Approach to the Molecular Orbital Theory. J. Electrochem. Soc. 2016, 163, H81–H88. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, P.; Dai, S. Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catal. 2015, 5, 6370–6385. [Google Scholar] [CrossRef]
- Prabu, M.; Ramakrishnan, P.; Ganesan, P.; Manthiram, A.; Shanmugam, S. LaTi0.65Fe0.35O3-δ nanoparticle-decorated nitro-gen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries. Nano Energy 2015, 15, 92–103. [Google Scholar] [CrossRef]
- Khaerudini, D.S.; Guan, G.; Zhang, P.; Xiaoketi, P.; Hao, X.; Wang, Z.; Kasai, Y.; Abudula, A. (Bi0.15La0.27Sr0.53)(Co0.25Fe0.75)O3-δ perovskite: A novel cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2016, 334, 137–145. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Y.; Su, C.; Zhou, W.; Liu, M.L.; Shao, Z.P. Perovskite SrCo0.9Nb0.1O3−δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angew. Chem. 2016, 55, 9576–9579. [Google Scholar] [CrossRef] [PubMed]
- Mefford, J.T.; Hardin, W.G.; Dai, S.; Johnston, K.P.; Stevenson, K.J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 2014, 13, 726–732. [Google Scholar] [CrossRef]
- Liang, K.; Wang, N.; Zhou, M.; Cao, Z.; Gu, T.; Zhang, Q.; Tang, X.; Hu, W.; Wei, B. Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors. J. Mater. Chem. A 2013, 1, 9730–9736. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, B.P.; Sun, Y.; Yang, H.; Zhang, X.Q. Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Su-percapacitors. Electrochim. Acta 2015, 174, 41–50. [Google Scholar] [CrossRef]
- Pushpa, R.; Daniel, D.; Butt, D.P. Electronic properties of Ca doped LaFeO3: A first-principles study. Solid State Ionics 2013, 184–190. [Google Scholar] [CrossRef]
- Sreenivas, P.V.; Kumar, A.; Chrisey, D.B.; Tomozawa, M.; Scott, J.F.; Katiyar, R.S. Barium zirconate-titanate/barium calci-um-titanate ceramics via sol-gel process: Novel high-energy-density capacitors. J. Phys. D Appl. Phys. 2011, 44, 395403. [Google Scholar]
- Sun, N.; Liu, H.X.; Yu, Z.Y.; Zheng, Z.N.; Shao, C.Y. The electrochemical performance of La0.6Sr0.4Co1-xNixO3 perovskite catalysts for Li-O2 batteries. Ionics 2016, 22, 869–876. [Google Scholar] [CrossRef]
- Che, W.; Wei, M.R.; Sang, Z.S.; Ou, Y.K.; Liu, Y.H.; Liu, J.P. Perovskite LaNiO3-δ oxide as an anion-intercalated pseudo-capacitor electrode. J. Alloys Compd. 2018, 731, 381–388. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Q.; Zhao, P.; Yao, M.; Hu, W.; Komarneni, S. Highly mesoporous LaNiO3 /NiO composite with high specific surface area as a battery-type electrode. Ceram. Int. 2017, 43, 5687–5692. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Z.; Bai, Z.; Mi, H.; Ji, C.; Pang, H.; Yu, C.; Qiu, J. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132. [Google Scholar] [CrossRef]
- Hakamada, M.; Abe, T.; Mabuchi, M. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors. J. Power Sources 2016, 325, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Doennig, D.; Pickett, W.E.; Pentcheva, R. Confinement-driven transitions between topological and Mott phases in (LaNiO3)N/(LaAlO3)M(111) superlattice. Phys. Rev. B 2014, 89, 121110. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.H.; Zeng, Y.X.; Yu, M.H.; Zhai, T.; Liang, C.L.; Xie, S.L.; Balogun, M.-S.; Tong, Y.X. Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodesfor Flexible Asymmetric Supercapacitors. Adv. Mater. 2014, 26, 3148–3155. [Google Scholar] [CrossRef]
- Wang, W.; Janotti, A.; Van De Walle, C.G. Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 2016, 4, 6641–6648. [Google Scholar] [CrossRef]
- Kim, H.; Cook, J.B.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460. [Google Scholar] [CrossRef]
- Hou, J.; Jiang, K.; Wei, R.; Tahir, M.; Wu, X.; Shen, M.; Wang, X.; Cao, C. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 30626–30634. [Google Scholar] [CrossRef]
- Lang, X.Q.; Mo, H.Y.; Hu, X.Y.; Tian, H.W. Supercapacitor performance of perovskite La1−xSrxMnO3. Dalton T. 2017, 46, 13720–13730. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Nan, H.; Lang, X.; Liu, S.; Qiao, L.; Hu, X.; Tian, H. Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram. Int. 2018, 44, 9733–9741. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Liu, P.; Li, Z.; Song, X. Synthesis of Two-Dimensional Sr-Doped LaNiO3 Nanosheets with Improved Electrochemical Performance for Energy Storage. Nanomaterials 2021, 11, 155. https://doi.org/10.3390/nano11010155
Zhang B, Liu P, Li Z, Song X. Synthesis of Two-Dimensional Sr-Doped LaNiO3 Nanosheets with Improved Electrochemical Performance for Energy Storage. Nanomaterials. 2021; 11(1):155. https://doi.org/10.3390/nano11010155
Chicago/Turabian StyleZhang, Bin, Ping Liu, Zijiong Li, and Xiaohui Song. 2021. "Synthesis of Two-Dimensional Sr-Doped LaNiO3 Nanosheets with Improved Electrochemical Performance for Energy Storage" Nanomaterials 11, no. 1: 155. https://doi.org/10.3390/nano11010155
APA StyleZhang, B., Liu, P., Li, Z., & Song, X. (2021). Synthesis of Two-Dimensional Sr-Doped LaNiO3 Nanosheets with Improved Electrochemical Performance for Energy Storage. Nanomaterials, 11(1), 155. https://doi.org/10.3390/nano11010155