Outstanding Radiation Tolerance of Supported Graphene: Towards 2D Sensors for the Space Millimeter Radioastronomy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Condon, J.J.; Ransom, S.M. Essential Radio Astronomy; Princeton University Press: Princeton, NJ, USA, 2016; Volume 2. [Google Scholar]
- Schmidt, M. 3C 273: A star-like object with large red-shift. Nature 1963, 197, 1040. [Google Scholar] [CrossRef]
- Ryle, M.; Clarke, R.W. An Examination of the Steady-state Model in the Light of Some Recent Observations of Radio Sources. Mon. Not. R. Astron. Soc. 1961, 122, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Balick, B.; Brown, R.L. Intense sub-arcsecond structure in the galactic center. Astrophys. J. 1974, 194, 265–270. [Google Scholar] [CrossRef]
- Roberts, M.S.; Whitehurst, R.N. The rotation curve and geometry of M31 at large galactocentric distances. Astrophys. J. 1975, 201, 327–346. [Google Scholar] [CrossRef]
- Weaver, H.; Williams, D.R.; Dieter, N.; Lum, W. Observations of a strong unidentified microwave line and of emission from the OH molecule. Nature 1965, 208, 29–31. [Google Scholar] [CrossRef]
- Taylor, J.H.; Fowler, L.A.; McCulloch, P.M. Measurements of general relativistic effects in the binary pulsar PSR1913 + 16. Nature 1979, 277, 437–440. [Google Scholar] [CrossRef]
- Yan, J.; Kim, M.H.; Elle, J.A.; Sushkov, A.B.; Jenkins, G.S.; Milchberg, H.M.; Fuhrer, M.S.; Drew, H.D. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 2012, 7, 472–478. [Google Scholar] [CrossRef]
- Vora, H.; Kumaravadivel, P.; Nielsen, B.; Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 2012, 100, 153507. [Google Scholar] [CrossRef]
- Cai, X.; Sushkov, A.B.; Suess, R.J.; Jadidi, M.M.; Jenkins, G.S.; Nyakiti, L.O.; Myers-Ward, R.L.; Li, S.; Yan, J.; Gaskill, D.K.; et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 2014, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Efetov, D.K.; Shiue, R.J.; Gao, Y.; Skinner, B.; Walsh, E.D.; Choi, H.; Zheng, J.; Tan, C.; Grosso, G.; Peng, C.; et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 2018, 13, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Blaikie, A.; Miller, D.; Alemán, B.J. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun. 2019, 10, 4726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Voronovich, S.; Lambin, P.; Kaplas, T.; Svirko, Y. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 2014, 4, 7191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Volynets, N.; Voronovich, S.; Paddubskaya, A.; Valusis, G.; Kaplas, T.; Svirko, Y.; Lambin, P. Enhanced microwave-to-terahertz absorption in graphene. Appl. Phys. Lett. 2016, 108, 123101. [Google Scholar] [CrossRef]
- Kuzhir, P.P.; Paddubskaya, A.G.; Volynets, N.I.; Batrakov, K.G.; Kaplas, T.; Lamberti, P.; Kotsilkova, R.; Lambin, P. Main principles of passive devices based on graphene and carbon films in microwave–THz frequency range. J. Nanophotonics 2017, 11, 1–19. [Google Scholar] [CrossRef]
- Kotakoski, J.; Brand, C.; Lilach, Y.; Cheshnovsky, O.; Mangler, C.; Arndt, M.; Meyer, J.C. Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene. Nano Lett. 2015, 15, 5944–5949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compagnini, G.; Giannazzo, F.; Sonde, S.; Raineri, V.; Rimini, E. Ion irradiation and defect formation in single layer graphene. Carbon 2009, 47, 3201–3207. [Google Scholar] [CrossRef]
- O’Hern, S.C.; Boutilier, M.S.H.; Idrobo, J.C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes. Nano Lett. 2014, 14, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Willke, P.; Amani, J.A.; Sinterhauf, A.; Thakur, S.; Kotzott, T.; Druga, T.; Weikert, S.; Maiti, K.; Hofsäss, H.; Wenderoth, M. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties. Nano Lett. 2015, 15, 5110–5115. [Google Scholar] [CrossRef]
- Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J. Modification of graphene by ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 406, 683–688. [Google Scholar] [CrossRef]
- Nastasi, M.; Michael, N.; Mayer, J.; Hirvonen, J.K.; James, M. Ion-Solid Interactions: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Lobet, M.; Reckinger, N.; Henrard, L.; Lambin, P. Robust electromagnetic absorption by graphene/polymer heterostructures. Nanotechnology 2015, 26, 285702. [Google Scholar] [CrossRef]
- Lambin, P.; Lobet, M.; Batrakov, K.; Kuzhir, P. Electrodynamics of graphene/polymer multilayers in the GHz frequency domain. In Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics; Springer: Dordrecht, The Netherlands, 2016; pp. 45–67. [Google Scholar]
- Kuzhir, P.P.; Paddubskaya, A.G.; Volynets, N.I.; Batrakov, K.G.; Maksimenko, S.A.; Golubeva, E.N.; Valusis, G.; Kaplas, T.; Reckinger, N.; Lobet, M.; et al. Effect of graphene grains size on the microwave electromagnetic shielding effectiveness of graphene/polymer multilayers. J. Nanophotonics 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Mittendorff, M.; Winnerl, S.; Murphy, T.E. 2D THz Optoelectronics. Adv. Opt. Mater. 2020, 2001500. [Google Scholar] [CrossRef]
- Borin Barin, G.; Song, Y.; de Fátima Gimenez, I.; Souza Filho, A.G.; Barreto, L.S.; Kong, J. Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 2015, 84, 82–90. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. The Stopping and Range of Ions in Matter. In Treatise on Heavy-Ion Science; Springer: Cambridge, MA, USA, 1985. [Google Scholar]
- Koval, Y. Mechanism of etching and surface relief development of PMMA under low-energy ion bombardment. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2004, 22, 843–851. [Google Scholar] [CrossRef]
- Arif, S.; Rafique, M.S.; Saleemi, F.; Sagheer, R.; Naab, F.; Toader, O.; Mahmood, A.; Rashid, R.; Mahmood, M. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 358, 236–244. [Google Scholar] [CrossRef]
- Isakov, I.F.; Kolodii, V.N.; Opekunov, M.S.; Matvienko, V.M.; Pechenkin, S.A.; Remnev, G.E.; Usov, Y.P. Sources of high power ion beams for technological applications. Vacuum 1991, 42, 159–162. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. The Penetration of Atomic Particles through Matter; Munksgaard: Copenhagen, Denmark, 1948. [Google Scholar]
- Bragg, W.H.; Kleeman, R. LXXIV. On the ionization curves of radium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1904, 8, 726–738. [Google Scholar] [CrossRef] [Green Version]
- Sabio, J.; Seoánez, C.; Fratini, S.; Guinea, F.; Neto, A.H.C.; Sols, F. Electrostatic interactions between graphene layers and their environment. Phys. Rev. B 2008, 77, 195409. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.H.; Efetov, D.K.; Jung, W.; Ranzani, L.; Walsh, E.D.; Ohki, T.A.; Taniguchi, T.; Watanabe, K.; Kim, P.; Englund, D.; et al. Graphene-based Josephson junction microwave bolometer. Nature 2020, 586, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Kokkoniemi, R.; Girard, J.P.; Hazra, D.; Laitinen, A.; Govenius, J.; Lake, R.E.; Sallinen, I.; Vesterinen, V.; Partanen, M.; Tan, J.Y.; et al. Bolometer operating at the threshold for circuit quantum electrodynamics. Nature 2020, 586, 47–51. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Hodgson, E.R. Radiation resistant alternative substrates for ITER bolometers. Fusion Eng. Des. 2003, 66–68, 881–885. [Google Scholar] [CrossRef]
Vacancy Type | Bi-Layer 1 | Bi-Layer 2 | Bi-Layer 3 | Bi-Layer 4 | Bi-Layer 5 | SiO Substrate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PMMA | Gr | PMMA | Gr | PMMA | Gr | PMMA | Gr | PMMA | Gr | ||
H | 116.0 | ||||||||||
C | 56.5 | 10 | |||||||||
O | 24.6 | 142.0 | |||||||||
Si | 139.0 | ||||||||||
Total vac/ion | 197.1 | 281.0 | |||||||||
H | 109.3 | 120 | 0.18 | ||||||||
C | 53.2 | 10 | 57 | 0 | 0.10 | 0 | |||||
O | 23.4 | 24.5 | 0.04 | 2.5 | |||||||
Si | 2.0 | ||||||||||
Total vac/ion | 185.9 | 201 | 0.32 | 4.5 | |||||||
H | 114.0 | 120.0 | 0.16 | 0.7 | 2.0 | 0 | |||||
C | 55.6 | 10 | 57.0 | 0 | 0.09 | 0 | 0.4 | 0 | 0.7 | 0 | 0 |
O | 24.4 | 24.5 | 0.04 | 0.2 | 0.3 | 0 | |||||
Si | 0 | ||||||||||
Total vac/ion | 194.0 | 202 | 0.29 | 1.3 | 3.0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paddubskaya, A.; Batrakov, K.; Khrushchinsky, A.; Kuten, S.; Plyushch, A.; Stepanov, A.; Remnev, G.; Shvetsov, V.; Baah, M.; Svirko, Y.; et al. Outstanding Radiation Tolerance of Supported Graphene: Towards 2D Sensors for the Space Millimeter Radioastronomy. Nanomaterials 2021, 11, 170. https://doi.org/10.3390/nano11010170
Paddubskaya A, Batrakov K, Khrushchinsky A, Kuten S, Plyushch A, Stepanov A, Remnev G, Shvetsov V, Baah M, Svirko Y, et al. Outstanding Radiation Tolerance of Supported Graphene: Towards 2D Sensors for the Space Millimeter Radioastronomy. Nanomaterials. 2021; 11(1):170. https://doi.org/10.3390/nano11010170
Chicago/Turabian StylePaddubskaya, Alesia, Konstantin Batrakov, Arkadiy Khrushchinsky, Semen Kuten, Artyom Plyushch, Andrey Stepanov, Gennady Remnev, Valery Shvetsov, Marian Baah, Yuri Svirko, and et al. 2021. "Outstanding Radiation Tolerance of Supported Graphene: Towards 2D Sensors for the Space Millimeter Radioastronomy" Nanomaterials 11, no. 1: 170. https://doi.org/10.3390/nano11010170