Effect of Nanoparticle Size in Pt/SiO2 Catalyzed Nitrate Reduction in Liquid Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Characterization
2.3. Activity Experiments
3. Results and Discussion
3.1. Characterization of the Prepared Catalysts
3.2. Influence of Pt Nanoparticle Size on Activity in Nitrate Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Lin, Y.; Wu, H.; Zhang, W.; Sun, Z.; Cheng, H.; Liu, W.; Wang, C.; Li, J.; Huang, X.; et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070. [Google Scholar] [CrossRef] [PubMed]
- Rioux, R.M.; Song, H.; Hoefelmeyer, J.D.; Yang, A.P.; Somorjai, G.A. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B 2005, 109, 2192–2202. [Google Scholar] [CrossRef]
- Wang, H.; An, K.; Sápi, A.; Liu, F.; Somorjai, G.A. Effects of nanoparticle size and metal/support interactions in Pt-catalyzed methanol oxidation reactions in gas and liquid phases. Catal. Lett. 2014, 144, 1930–1938. [Google Scholar] [CrossRef]
- Bai, L.; Wang, X.; Chen, Q.; Ye, Y.; Zheng, H.; Guo, J.; Yin, Y.; Gao, C. Explaining the size dependence in platinum nanoparticle catalyzed hydrogenation reactions. Angew. Chem. Int. Ed. 2016, 55, 15656–15661. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Miranda, C.R.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410. [Google Scholar] [CrossRef] [Green Version]
- Mojet, B.; Miller, J.; Ramaker, D.; Koningsberger, D. A new model describing the metal–support interaction in noble metal catalysts. J. Catal. 1999, 186, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Tsung, C.-K.; Kuhn, J.N.; Huang, W.; Aliaga, C.; Hung, L.-I.; Somorjai, G.A.; Yang, P. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009, 131, 5816–5822. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, P.; Song, J.; Li, Q. Application of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: A review. Appl. Sci. 2018, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Yadav, P.; Pal, A.K.; Mishra, V. Water Pollutants: Origin and Status. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp. 5–20. [Google Scholar]
- European Environment Agency. European Waters—Assessment of Status and Pressures 2018; EEA Report No 7/2018; Publications Office of the European Union: Luxembourg, 2018; p. 85. [Google Scholar] [CrossRef]
- Jones, R.R.; Weyer, P.J.; Dellavalle, C.T.; Inoue-Choi, M.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Robien, K.; Freeman, L.E.B.; Silverman, D.T.; et al. Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environ. Health Perspect. 2016, 124, 1751–1758. [Google Scholar] [CrossRef]
- Blaisdell, J.; Turyk, M.E.; Almberg, K.S.; Jones, R.M.; Stayner, L. Prenatal exposure to nitrate in drinking water and the risk of congenital anomalies. Environ. Res. 2019, 176, 108553. [Google Scholar] [CrossRef]
- Islam, M.; Patel, R. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination 2010, 256, 120–128. [Google Scholar] [CrossRef]
- Mena-Durán, C.J.; Kou, M.R.S.; Lopez, T.; Azamar-Barrios, J.A.; Aguilar, D.H.; Domínguez, M.I.; Odriozola, J.A.; Quintana, P. Nitrate removal using natural clays modified by acid thermoactivation. Appl. Surf. Sci. 2007, 253, 5762–5766. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Enhanced removal of nitrate from water using surface modification of adsorbents—A review. J. Environ. Manag. 2013, 131, 363–374. [Google Scholar] [CrossRef]
- Song, W.; Gao, B.; Xu, X.; Wang, F.; Xue, N.; Sun, S.; Song, W.; Jia, R. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J. Hazard. Mater. 2016, 304, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Kalaruban, M.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Submerged membrane adsorption hybrid system using four adsorbents to remove nitrate from water. Environ. Sci. Pollut. Res. 2017, 25, 20328–20335. [Google Scholar] [CrossRef] [PubMed]
- Epsztein, R.; Nir, O.; Lahav, O.; Green, M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem. Eng. J. 2015, 279, 372–378. [Google Scholar] [CrossRef]
- Rezvani, F.; Sarrafzadeh, M.; Ebrahimi, S.; Oh, H.-M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. 2019, 26, 1124–1141. [Google Scholar] [CrossRef]
- Guy, K.A.; Xu, H.; Yang, J.C.; Werth, C.J.; Shapley, J.R. Catalytic nitrate and nitrite reduction with Pd− Cu/PVP colloids in water: Composition, structure, and reactivity correlations. J. Phys. Chem. C 2009, 113, 8177–8185. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Órfão, J.J.D.M.; Pereira, M.F.R. Activated carbon supported metal catalysts for nitrate and nitrite reduction in water. Catal. Lett. 2008, 126, 253–260. [Google Scholar] [CrossRef]
- Mendow, G.; Veizaga, N.; Querini, C.; Sánchez, B. A continuous process for the catalytic reduction of water nitrate. J. Environ. Chem. Eng. 2019, 7, 102808. [Google Scholar] [CrossRef]
- Ruiz-Beviá, F.; Fernández-Torres, M.J. Effective catalytic removal of nitrates from drinking water: An unresolved problem? J. Clean. Prod. 2019, 217, 398–408. [Google Scholar] [CrossRef]
- Miyazaki, A.; Asakawa, T.; Nakano, Y.; Balint, I. Nitrite reduction on morphologically controlled Pt nanoparticles. Chem. Commun. 2005, 29, 3730–3732. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, F.A.; Aghemo, V.; Moreno, I.; Navascués, N.; Irusta, S.; Gutierrez, L. Pd and Pd, In nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media. J. Environ. Chem. Eng. 2020, 8, 103651. [Google Scholar] [CrossRef]
- Verho, O.; Gao, F.; Johnston, E.V.; Wan, W.; Nagendiran, A.; Zheng, H.; Bäckvall, J.-E.; Zou, X. Mesoporous silica nanoparticles applied as a support for Pd and Au nanocatalysts in cycloisomerization reactions. APL Mater. 2014, 2, 113316. [Google Scholar] [CrossRef]
- Alayoglu, S.; Aliaga, C.; Sprung, C.; Somorjai, G.A. Size and shape dependence on Pt nanoparticles for the methylcyclopentane/hydrogen ring opening/ring enlargement reaction. Catal. Lett. 2011, 141, 914–924. [Google Scholar] [CrossRef]
- Modak, A.; Bhanja, P.; Bhaumik, A. Pt nanoparticles supported over porous porphyrin nanospheres for chemoselective hydrogenation reactions. ChemCatChem 2019, 11, 1977–1985. [Google Scholar] [CrossRef]
- Musselwhite, N.; Na, K.; Sabyrov, K.; Alayoglu, S.; Somorjai, G.A. Mesoporous aluminosilicate catalysts for the selective isomerization of n-Hexane: The roles of surface acidity and platinum metal. J. Am. Chem. Soc. 2015, 137, 10231–10237. [Google Scholar] [CrossRef]
- An, K.; Musselwhite, N.; Kennedy, G.; Pushkarev, V.V.; Baker, L.R.; Somorjai, G.A. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J. Colloid Interface Sci. 2013, 392, 122–128. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity; Academic Press: London, UK, 1982; p. 3. [Google Scholar]
- Hamid, S.; Kumar, M.A.; Han, J.-I.; Kim, H.; Lee, W. Nitrate reduction on the surface of bimetallic catalysts supported by nano-crystalline beta-zeolite (NBeta). Green Chem. 2017, 19, 853–866. [Google Scholar] [CrossRef]
- Kokkonen, R.; Sirén, H.; Kauliomäki, S.; Rovio, S.; Luomanperä, K. On-line process monitoring of water-soluble ions in pulp and paper machine waters by capillary electrophoresis. J. Chromatogr. A 2004, 1032, 243–252. [Google Scholar] [CrossRef]
- O’Flaherty, B.; Yang, W.-P.; Sengupta, S.; Cholli, A.L. Fast detection of anionic components in sugar and wine samples using a novel device based on capillary zone electrophoresis. Food Chem. 2001, 74, 111–118. [Google Scholar] [CrossRef]
- Boudart, M. Turnover Rates in Heterogeneous Catalysis. Chem. Rev. 1995, 95, 661–666. [Google Scholar] [CrossRef]
- Umpierre, A.P.; De Jesús, E.; Dupont, J. Turnover numbers and soluble metal nanoparticles. ChemCatChem 2011, 3, 1413–1418. [Google Scholar] [CrossRef]
- Choi, H.; Oh, S.; Park, J.Y. High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catal. Today 2020, 352, 212–219. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Zhang, B.; Shi, W.; Guo, Y.; Cui, F.; FuYi, C. Insight into the size effect of Pd nanoparticles on the catalytic reduction of nitrite in water over Pd/C catalysts. Environ. Sci. Nano 2020, 7, 2117–2129. [Google Scholar] [CrossRef]
- Granger, P.; Troncéa, S.; Dacquin, J.; Trentesaux, M.; Parvulescu, V. Support-induced effect on the catalytic properties of Pd particles in water denitrification: Impact of surface and structural features of mesoporous ceria-zirconia support. Appl. Catal. B Environ. 2018, 224, 648–659. [Google Scholar] [CrossRef]
- Ebbesen, S.D.; Mojet, B.L.; Lefferts, L. Effect of pH on the nitrite hydrogenation mechanism over Pd/Al2O3 and Pt/Al2O3: Details obtained with ATR-IR spectroscopy. J. Phys. Chem. C 2010, 115, 1186–1194. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, X.; Yang, W.; Wang, B.; Yang, Z.; Liu, Y. Selective reduction of nitrate into nitrogen using Cu/Fe bimetal combined with sodium sulfite. Ind. Eng. Chem. Res. 2019, 58, 5175–5185. [Google Scholar] [CrossRef]
- Zhang, F.; Miao, S.; Yang, Y.; Zhang, X.; Chen, J.; Guan, N. Size-dependent hydrogenation selectivity of nitrate on Pd− Cu/TiO2 catalysts. J. Phys. Chem. C 2008, 112, 7665–7671. [Google Scholar] [CrossRef]
- Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252. [Google Scholar] [CrossRef] [Green Version]
- Lundwall, M.J.; McClure, S.M.; Goodman, D.W. Probing terrace and step sites on Pt nanoparticles using CO and ethylene. J. Phys. Chem. C 2010, 114, 7904–7912. [Google Scholar] [CrossRef]
- Deganello, F.; Liotta, L.; Macaluso, A.; Venezia, A. Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Appl. Catal. B Environ. 2000, 24, 265–273. [Google Scholar] [CrossRef]
- Pizarro, A.; Molina, C.; Rodriguez, J.; Epron, F. Catalytic reduction of nitrate and nitrite with mono- and bimetallic catalysts supported on pillared clays. J. Environ. Chem. Eng. 2015, 3, 2777–2785. [Google Scholar] [CrossRef]
- State, R.; Scurtu, M.; Miyazaki, A.; Papa, F.; Atkinson, I.; Munteanu, C.; Balint, I. Influence of metal-support interaction on nitrate hydrogenation over Rh and Rh-Cu nanoparticles dispersed on Al2O3 and TiO2 supports. Arab. J. Chem. 2017, 10, 975–984. [Google Scholar] [CrossRef]
- Huo, X.; Van Hoomissen, D.J.; Liu, J.; Vyas, S.; Strathmann, T.J. Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Appl. Catal. B Environ. 2017, 211, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Epron, F.; Gauthard, F.; Barbier, J. Catalytic reduction of nitrate in water on a monometallic Pd/CeO2 catalyst. J. Catal. 2002, 206, 363–367. [Google Scholar] [CrossRef]
- Miyazaki, A.; Matsuda, K.; Papa, F.; Scurtu, M.; Negrila, C.; Dobrescu, G.; Balint, I. Impact of particle size and metal–support interaction on denitration behavior of well-defined Pt–Cu nanoparticles. Catal. Sci. Technol. 2015, 5, 492–503. [Google Scholar] [CrossRef]
- Seraj, S.; Kunal, P.; Li, H.; Henkelman, G.; Humphrey, S.M.; Werth, C.J. PdAu alloy nanoparticle catalysts: Effective candidates for nitrite reduction in water. ACS Catal. 2017, 7, 3268–3276. [Google Scholar] [CrossRef]
- Kuhn, J.N.; Tsung, C.-K.; Huang, W.; Somorjai, G.A. Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J. Catal. 2009, 265, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Sastry, M.; Patil, V.; Mayya, K.; Paranjape, D.; Singh, P.; Sainkar, S. Organization of polymer-capped platinum colloidal particles at the air–water interface. Thin Solid Film. 1998, 324, 239–244. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Y. An effective Pt-Cu/SiO2 catalyst for the selective hydrogenation of cinnamaldehyde. J. Chem. 2018, 2018, 5608243. [Google Scholar] [CrossRef] [Green Version]
- Motin, A.; Haunold, T.; Bukhtiyarov, A.V.; Bera, A.; Rameshan, C.; Rupprechter, G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies. Appl. Surf. Sci. 2018, 440, 680–687. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umegaki, T.; Yan, J.-M.; Zhang, X.-B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2009, 34, 3816–3822. [Google Scholar] [CrossRef]
- Safo, I.A.; Dosche, C.; Oezaslan, M. Effects of capping agents on the oxygen reduction reaction activity and shape stability of Pt nanocubes. ChemPhysChem 2019, 20, 3010–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W. Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 2012, 28, 6736–6741. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, F.; Zhao, L.; Yang, W.; Yao, J. Evidence of a unique electron donor− acceptor property for platinum nanoparticles as studied by XPS. Langmuir 2006, 22, 4480–4482. [Google Scholar] [CrossRef]
Catalyst | Pt Loading (wt.%) | SBET (m2g−1) | Smeso (m2g−1) | Vmicro (cm3liqg−1) | Vnet (cm3liqg−1) |
---|---|---|---|---|---|
SBA-15 | - | 799 | 714 | 0.03 | 1.11 |
2 nm Pt/SBA-15 | 1.5 | 615 | 565 | 0.01 | 0.93 |
4 nm Pt/SBA-15 | 1.2 | 683 | 587 | 0.03 | 0.98 |
MCF-17 | - | 421 | 421 | 0 | 1.90 |
8 nm Pt/MCF-17 | 1.8 | 397 | 397 | 0 | 2.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafqat, K.; Pitkäaho, S.; Tiainen, M.; Matějová, L.; Keiski, R.L. Effect of Nanoparticle Size in Pt/SiO2 Catalyzed Nitrate Reduction in Liquid Phase. Nanomaterials 2021, 11, 195. https://doi.org/10.3390/nano11010195
Shafqat K, Pitkäaho S, Tiainen M, Matějová L, Keiski RL. Effect of Nanoparticle Size in Pt/SiO2 Catalyzed Nitrate Reduction in Liquid Phase. Nanomaterials. 2021; 11(1):195. https://doi.org/10.3390/nano11010195
Chicago/Turabian StyleShafqat, Khawer, Satu Pitkäaho, Minna Tiainen, Lenka Matějová, and Riitta L. Keiski. 2021. "Effect of Nanoparticle Size in Pt/SiO2 Catalyzed Nitrate Reduction in Liquid Phase" Nanomaterials 11, no. 1: 195. https://doi.org/10.3390/nano11010195
APA StyleShafqat, K., Pitkäaho, S., Tiainen, M., Matějová, L., & Keiski, R. L. (2021). Effect of Nanoparticle Size in Pt/SiO2 Catalyzed Nitrate Reduction in Liquid Phase. Nanomaterials, 11(1), 195. https://doi.org/10.3390/nano11010195