High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Device Fabrication
2.3. Device Characterization and Measurements
3. Results and Discussion
3.1. Characterization of ZnO and GrF/ZnO Composite
3.2. Electrical Response of GrF/ZnO Composite with Respect to RH%
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wernecke, R.; Wernecke, J. Industrial Moisture and Humidity Measurement: A Practical Guide—Roland Wernecke, Jan Wernecke—Google Books; WILEY-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Humidity Sensor Market Size, Share & Forecast Report 2019–2025. In KBV Research; 2019; Available online: https://www.kbvresearch.com/humidity-sensor-market/ (accessed on 10 November 2020).
- Humidity Sensor Market Size, Share|Global Industry Report, 2019–2025. In Grand View Research; 2019; Available online: https://www.grandviewresearch.com/industry-analysis/humidity-sensor-market/toc (accessed on 10 November 2020).
- Smith, A.D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A.C.; Vaziri, S.; Forsberg, F.; Råsander, M.; Hugosson, H.; Bergqvist, L.; et al. Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099–19109. [Google Scholar] [CrossRef] [Green Version]
- Rahim, I.; Shah, M.; Khan, A.; Luo, J.; Zhong, A.; Li, M.; Ahmed, R.; Li, H.; Wei, Q.; Fu, Y. Capacitive and resistive response of humidity sensors based on graphene decorated by PMMA and silver nanoparticles. Sens. Actuators B Chem. 2018, 267, 42–50. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent advances in graphene-based humidity sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Najeeb, M.A.; Ahmad, Z.; Shakoor, R.A. Organic Thin-Film Capacitive and Resistive Humidity Sensors: A Focus Review. Adv. Mater. Interfaces 2018, 5, 1–19. [Google Scholar] [CrossRef]
- Cho, M.; Kim, S.; Kim, I.; Kim, E.; Wang, Z.; Kim, N.; Kim, S.; Oh, J. Perovskite-Induced Ultrasensitive and Highly Stable Humidity Sensor Systems Prepared by Aerosol Deposition at Room Temperature. Adv. Funct. Mater. 2020, 30, 1907449. [Google Scholar] [CrossRef]
- Jlassi, K.; Mallick, S.; Mutahir, H.; Ahmad, Z.; Touati, F. Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors. Nanomaterials 2020, 10, 1426. [Google Scholar] [CrossRef]
- Hwang, B.-Y.; Du, W.; Lee, H.-J.; Kang, S.; Takada, M.; Kim, J.-Y. Stretchable and High-performance Sensor films Based on Nanocomposite of Polypyrrole/SWCNT/Silver Nanowire. Nanomaterials 2020, 10, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.U.; Hassan, G.; Bae, J. Bio-compatible organic humidity sensor based on natural inner egg shell membrane with multilayer crosslinked fiber structure. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Zhao, H.; Lin, X.; Liu, S.; Liu, Y.; Liu, X.; Fei, T.; Zhang, T. Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef]
- Soomro, A.M.; Jabbar, F.; Ali, M.; Lee, J.W.; Mun, S.W.; Choi, K.H. All-range flexible and biocompatible humidity sensor based on poly lactic glycolic acid (PLGA) and its application in human breathing for wearable health monitoring. J. Mater. Sci. Mater. Electron. 2019, 30, 9455–9465. [Google Scholar] [CrossRef]
- Rehman, M.M.; Siddiqui, G.U.; ur Rehman, M.M.; Kim, H.B.; Doh, Y.H.; Choi, K.H. 2D nanocomposite of hexagonal boron nitride nanoflakes and molybdenum disulfide quantum dots applied as the functional layer of all-printed flexible memory device. Mater. Res. Bull. 2018, 105, 28–35. [Google Scholar] [CrossRef]
- Horzum, N.; Taşçioglu, D.; Okur, S.; Demir, M.M. Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta 2011, 85, 1105–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.U.; Hassan, G.; Awais, M.; Bae, J. All printed full range humidity sensor based on Fe2O3. Sens. Actuators A Phys. 2020, 311, 112072. [Google Scholar] [CrossRef]
- Velumani, M.; Meher, S.R.; Alex, Z.C. Composite metal oxide thin film based impedometric humidity sensors. Sens. Actuators B Chem. 2019, 301, 127084. [Google Scholar] [CrossRef]
- Farzaneh, A.; Mohammadzadeh, A.; Esrafili, M.D.; Mermer, O. Experimental and theoretical study of TiO 2 based nanostructured semiconducting humidity sensor. Ceram. Int. 2019, 45, 8362–8369. [Google Scholar] [CrossRef]
- Irawati, N.; Rahman, H.A.; Ahmad, H.; Harun, S.W. A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating. Meas. J. Int. Meas. Confed. 2017, 99, 128–133. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G.R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B Chem. 2011, 159, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Feng, N.; Li, J.; Zhang, J.; Li, W. Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens. Actuators B Chem. 2019, 283, 786–792. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Liu, L.; Zhang, H.; Zheng, W.; Wang, Y.; Huang, H.; Wang, Z.; Wang, C. Humidity sensor based on LiCl-doped ZnO electrospun nanofibers. Sens. Actuators B Chem. 2009, 141, 404–409. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, H.; Chen, C.; Lin, C. Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sens. Actuators B Chem. 2019, 287, 526–534. [Google Scholar] [CrossRef]
- Ismail, A.S.; Mamat, M.H.; Yusoff, M.M.; Malek, M.F.; Zoolfakar, A.S.; Rani, R.A.; Suriani, A.B.; Mohamed, A.; Ahmad, M.K.; Rusop, M. Enhanced humidity sensing performance using Sn-Doped ZnO nanorod Array/SnO2 nanowire heteronetwork fabricated via two-step solution immersion. Mater. Lett. 2018, 210, 258–262. [Google Scholar] [CrossRef]
- Chang, S.P.; Chang, S.J.; Lu, C.Y.; Li, M.J.; Hsu, C.L.; Chiou, Y.Z.; Hsueh, T.J.; Chen, I.C. A ZnO nanowire-based humidity sensor. Superlattices Microstruct. 2010, 47, 772–778. [Google Scholar] [CrossRef]
- Bu, I.Y.Y.; Yang, C.C. High-performance ZnO nanoflake moisture sensor. Superlattices Microstruct. 2012, 51, 745–753. [Google Scholar] [CrossRef]
- Yusof, H.H.M.; Harun, S.W.; Dimyati, K.; Bora, T.; Sterckx, K.; Mohammed, W.S.; Dutta, J. Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform. IEEE Sens. J. 2019, 19, 2442–2449. [Google Scholar] [CrossRef]
- Erol, A.; Okur, S.; Comba, B.; Mermer, Ö.; Arikan, M.Ç. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sens. Actuators B Chem. 2010, 145, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.F.; Chang, M.; Lin, C.H. Synthesis of ZnO thin films and their application as humidity sensors. In Microsystem Technologies; Springer: Berlin/Heidelberg, Germany, 2013; Volume 19, pp. 1737–1743. [Google Scholar] [CrossRef]
- Hassan, G.; Bae, J.; Lee, C.H.; Hassan, A. Wide range and stable ink-jet printed humidity sensor based on graphene and zinc oxide nanocomposite. J. Mater. Sci. Mater. Electron. 2018, 29, 5806–5813. [Google Scholar] [CrossRef]
- Ze, L.; Yueqiu, G.; Xujun, L.; Yong, Z. MoS2-modified ZnO quantum dots nanocomposite: Synthesis and ultrafast humidity response. Appl. Surf. Sci. 2017, 399, 330–336. [Google Scholar] [CrossRef]
- Dwiputra, M.A.; Fadhila, F.; Imawan, C.; Fauzia, V. The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure. Sens. Actuators B Chem. 2020, 310, 127810. [Google Scholar] [CrossRef]
- Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 2016, 225, 233–240. [Google Scholar] [CrossRef]
- Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C.H. All-printed humidity sensor based on gmethyl-red/methyl-red composite with high sensitivity. Carbon N. Y. 2016, 105, 23–32. [Google Scholar] [CrossRef]
- Phan, D.T.; Park, I.; Park, A.R.; Park, C.M.; Jeon, K.J. Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, X.; Li, M.; Fan, Y.; Sun, R. Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film. Sens. Actuators B Chem. 2018, 255, 1569–1576. [Google Scholar] [CrossRef]
- He, P.; Brent, J.R.; Ding, H.; Yang, J.; Lewis, D.J.; O’Brien, P.; Derby, B. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 2018, 10, 5599–5606. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Zhang, Z.; Sun, P.; Chen, H. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir 2020, 36, 9443–9448. [Google Scholar] [CrossRef] [PubMed]
- Chani, M.T.S.; Karimov, K.S.; Meng, H.; Akhmedov, K.M.; Murtaza, I.; Asghar, U.; Abbass, S.Z.; Ali, R.; Asiri, A.M.; Nawaz, N. Humidity Sensor Based on Orange Dye and Graphene Solid Electrolyte Cells. Russ. J. Electrochem. 2019, 55, 1391–1396. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Li, M.; Li, H.; Xu, S.; Qian, L.; Yang, B. Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring. Sens. Actuators B Chem. 2020, 308, 127693. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, T.; Shao, J.; Yang, B.; Fei, T.; Wang, R. A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens. Actuators A Phys. 2019, 287, 93–101. [Google Scholar] [CrossRef]
- Morsy, M.; Ibrahim, M.; Yuan, Z.; Meng, F. Graphene Foam Decorated with ZnO as a Humidity Sensor. IEEE Sens. J. 2020, 20, 1721–1729. [Google Scholar] [CrossRef]
- Wu, J.; Yin, C.; Zhou, J.; Li, H.; Liu, Y.; Shen, Y.; Garner, S.; Fu, Y.; Duan, H. Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 39817–39825. [Google Scholar] [CrossRef]
- Yang, H.; Ye, Q.; Zeng, R.; Zhang, J.; Yue, L.; Xu, M.; Qiu, Z.-J.; Wu, D. Stable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer. Sensors 2017, 17, 2415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, J.; Xia, B. Layer-by-Layer Self-Assembly of Zinc Oxide/Graphene Oxide Hybrid Toward Ultrasensitive Humidity Sensing. IEEE Electron Device Lett. 2016, 37, 916–919. [Google Scholar] [CrossRef]
- Zafar, M.; Yun, J.Y.; Kim, D.H. Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer. Mater. Sci. Semicond. Process. 2019, 96, 66–72. [Google Scholar] [CrossRef]
- Toe, M.Z.; Jusoh, N.A.H.N.; Pung, S.Y.; Yaacob, K.A.; Matsuda, A.; Tan, W.K.; Han, S.S. Effect of ZnO seed layer on the growth of ZnO nanorods on silicon substrate. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2019; Volume 17, pp. 553–559. [Google Scholar] [CrossRef]
- Chen, S.N.; Huang, M.Z.; Lin, Z.H.; Liu, C.P. Enhancing charge transfer for ZnO nanorods based triboelectric nanogenerators through Ga doping. Nano Energy 2019, 65, 104069. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Qiu, Y.; Pan, Q.; Hu, P. 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloys Compd. 2015, 620, 31–37. [Google Scholar] [CrossRef]
- Cai, R.; Wu, J.G.; Sun, L.; Liu, Y.J.; Fang, T.; Zhu, S.; Li, S.Y.; Wang, Y.; Guo, L.F.; Zhao, C.E.; et al. 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater. Des. 2016, 90, 839–844. [Google Scholar] [CrossRef]
- Zhen, Z.; Li, Z.; Zhao, X.; Zhong, Y.; Zhang, L.; Chen, Q.; Yang, T.; Zhu, H. Formation of Uniform Water Microdroplets on Wrinkled Graphene for Ultrafast Humidity Sensing. Small 2018, 14, 1703848. [Google Scholar] [CrossRef]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef]
Salt Solution | LiCl | CH3COOK | CaCl2 | K2CO3 | NaBr | CuCl2 | NaCl | KCl | K2SO4 |
---|---|---|---|---|---|---|---|---|---|
RH% | 15% | 23% | 32% | 46% | 60% | 67% | 72% | 80% | 86% |
Active Material | Response Time (s) | Recovery Time (s) | Average Sensitivity (X/%RH) | Range | Reference |
---|---|---|---|---|---|
ZnO/GrF | 0.4 | 4 | 7.7μA/%RH | 15–86% | This Work |
ZnO nanowires (NWs)/graphene quantum dots (GQDs) | 27 | 12 | 40.16 kHz/%RH | 20–90% | [43] |
ZnO/Graphene Foam | 10 | 15 | 33.3 Ω/%RH | 20–95% | [42] |
ZnO/PVP-RGO | 12 | 3 | - | 15–95% | [44] |
Active Material | Response Time (s) | Recovery Time (s) | Average Sensitivity (X/%RH) | Range | Reference |
---|---|---|---|---|---|
ZnO/GrF | 0.4 | 4 | 7.7μA/%RH | 15–86% | This Work |
ZnO/MoS2 | 1 | 20 | - | 11–95% | [31] |
ZnO/WS2 | 74.51 | 25.67 | 101.71 fF/% RH | 18–85% | [32] |
Active Material | Response Time (s) | Recovery Time (s) | Average Sensitivity (X/%RH) | Range | Reference |
---|---|---|---|---|---|
ZnO/GrF | 0.4 | 4 | 7.7μA/%RH | 15–86% | This Work |
Graphene film | 0.125 | 0.125 | - | 11–95% | [51] |
Graphene oxide film | 0.3 | 0.3 | - | 30–80% | [52] |
BP/Graphene | 9 | 30 | 73 Ω/%RH | 15–70% | [35] |
SiO2/PVA/Graphene | 24 | 14.4 | 2.429 kHz/%RH | 55–90% | [40] |
Chitosan/GQD | 36 | 3 | 39.2 Hz/%RH | 11–95% | [41] |
SnO2/RGO | 102 | 6 | 1604.89 pF/%RH | 11–97% | [33] |
Non-woven fabric/GO | 8.90 | 11.76 | - | 42–90% | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saqib, M.; Ali Khan, S.; Mutee Ur Rehman, H.M.; Yang, Y.; Kim, S.; Rehman, M.M.; Young Kim, W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials 2021, 11, 242. https://doi.org/10.3390/nano11010242
Saqib M, Ali Khan S, Mutee Ur Rehman HM, Yang Y, Kim S, Rehman MM, Young Kim W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials. 2021; 11(1):242. https://doi.org/10.3390/nano11010242
Chicago/Turabian StyleSaqib, Muhammad, Shenawar Ali Khan, Hafiz Mohammad Mutee Ur Rehman, Yunsook Yang, Seongwan Kim, Muhammad Muqeet Rehman, and Woo Young Kim. 2021. "High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite" Nanomaterials 11, no. 1: 242. https://doi.org/10.3390/nano11010242
APA StyleSaqib, M., Ali Khan, S., Mutee Ur Rehman, H. M., Yang, Y., Kim, S., Rehman, M. M., & Young Kim, W. (2021). High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials, 11(1), 242. https://doi.org/10.3390/nano11010242