Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Spinning Solutions
2.3. Coaxial Wet-Spinning of Chitosan-PEDOT:PSS Fibers
2.4. Fabrication of Triaxial CNT-Chitosan-PEDOT:PSS Fibers
2.5. Characterizations
2.5.1. Rheological Measurement
2.5.2. Impedance Behavior of Chitosan Hydrogel
2.5.3. Mechanical Analysis
2.5.4. Microscopy
2.5.5. Cyclic Voltammetry
2.5.6. Supercapacitor Performance Testing
3. Results and Discussions
3.1. Rheological Characterization of Fiber Spinning Solutions
3.2. Electrical Characterization of Hydrogels
3.3. Microscopic Investigation of As-Prepared Fibers
3.3.1. Morphological Observation in Wet-State
3.3.2. Morphological Observation in Dry-State
3.4. Mechanical Properties
3.5. Cyclic Voltammetry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, H.; You, X.; Deng, J.; Chen, X.; Yang, Z.; Ren, J.; Peng, H. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 2014, 26, 2868–2873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhou, R.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. J. Mater. Chem. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Lam Po Tang, S. Recent developments in flexible wearable electronics for monitoring applications. Trans. Inst. Meas. Control 2007, 29, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Tai, Z.; Chen, J.; Xue, Q. Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 2011, 3, 212. [Google Scholar] [CrossRef] [PubMed]
- Mirabedini, A. Developing Novel Spinning Methods to Fabricate Continuous Multifunctional Fibres for Bioapplications; Springer Nature Switzerland AG: Cham, Switzerland, 2018; ISBN 9783319953779. [Google Scholar]
- Mirabedini, A.; Ang, A.; Nikzad, M.; Fox, B.; Lau, K.T.; Hameed, N. Evolving Strategies for Producing Multiscale Graphene-Enhanced Fiber-Reinforced Polymer Composites for Smart Structural Applications. Adv. Sci. 2020, 7, 1903501. [Google Scholar] [CrossRef] [Green Version]
- Seyedin, S.; Razal, J.M.; Innis, P.C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G.G. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Appl. Mater. Interfaces 2015, 7, 21150–21158. [Google Scholar] [CrossRef]
- Cai, X.; Peng, M.; Yu, X.; Fu, Y.; Zou, D. Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2014, 2, 1184. [Google Scholar] [CrossRef]
- Wu, Z.S.; Feng, X.; Cheng, H.M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181. [Google Scholar] [CrossRef]
- Huang, L.; Rao, W.; Fan, L.; Xu, J.; Bai, Z.; Xu, W.; Bao, H. Paper electrodes coated with partially-exfoliated graphite and polypyrrole for high-performance flexible supercapacitors. Polymers 2018, 10, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Wu, Z.-S.; Zhou, F.; Shi, X.; Zheng, S.; Qin, J.; Xiao, H.; Sun, C.; Bao, X. All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH) 2 nanoflowers. NPJ 2D Mater. Appl. 2018, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Mogera, U.; George, S.J.; Kulkarni, G.U. A planar supercapacitor made of supramolecular nanofibre based solid electrolyte exhibiting 8V window. Nano Energy 2019, 61, 259–266. [Google Scholar] [CrossRef]
- Xu, P.; Wei, B.; Cao, Z.; Zheng, J.; Gong, K.; Li, F.; Yu, J.; Li, Q.; Lu, W.; Byun, J.-H.; et al. Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers. ACS Nano 2015, 9, 6088–6096. [Google Scholar] [CrossRef]
- Yu, J.; Lu, W.; Pei, S.; Gong, K.; Wang, L.; Meng, L.; Huang, Y.; Smith, J.P.; Booksh, K.S.; Li, Q.; et al. Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films. ACS Nano 2016, 10, 5204–5211. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Wang, Y.; Huang, H. Advances and prospects of fiber supercapacitors. J. Mater. Chem. A 2015, 3, 20863–20879. [Google Scholar] [CrossRef]
- Mirabedini, A.; Foroughi, J.; Wallace, G.G. Developments in conducting polymer fibres: From established spinning methods toward advanced applications. RSC Adv. 2016, 6, 44687–44716. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.A.; Shin, M.K.; Kim, S.H.S.J.; Cho, H.U.; Spinks, G.M.; Wallace, G.G.; Lima, M.D.; Lepró, X.; Kozlov, M.E.; Baughman, R.H.; et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 2013, 4, 1970. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562. [Google Scholar] [CrossRef]
- Foroughi, J.; Spinks, G.M.; Antiohos, D.; Mirabedini, A.; Gambhir, S.; Wallace, G.G.; Ghorbani, S.R.; Peleckis, G.; Kozlov, M.E.; Lima, M.D.; et al. Highly conductive carbon nanotube-graphene hybrid yarn. Adv. Funct. Mater. 2014, 24, 5859–5865. [Google Scholar] [CrossRef]
- Huang, M.; Wang, L.; Chen, S.; Kang, L.; Lei, Z.; Shi, F.; Xu, H.; Liu, Z.-H. Highly flexible all-solid-state cable-type supercapacitors based on Cu/reduced graphene oxide/manganese dioxide fibers. RSC Adv. 2017, 7, 10092–10099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Hu, H.; Yao, W.; Ye, C. Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. J. Mater. Chem. A 2015, 3, 617–623. [Google Scholar] [CrossRef]
- Hong, Y.; Cheng, X.L.; Liu, G.J.; Hong, D.S.; He, S.S.; Wang, B.J.; Sun, X.M.; Peng, H.S. One-step Production of Continuous Supercapacitor Fibers for a Flexible Power Textile. Chin. J. Polym. Sci. 2019, 37, 737–743. [Google Scholar] [CrossRef]
- Mirabedini, A.; Foroughi, J.; Romeo, T.; Wallace, G.G.G.G. Development and Characterization of Novel Hybrid Hydrogel Fibers. Macromol. Mater. Eng. 2015, 300, 1217–1225. [Google Scholar] [CrossRef] [Green Version]
- Mirabedini, A.; Foroughi, J.; Thompson, B.; Wallace, G.G. Fabrication of Coaxial Wet-Spun Graphene—Chitosan Bio fibers. Adv. Eng. Mater. 2015, 18, 284–293. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef]
- Le, V.T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q.A.; Pham, D.T.; Lee, J.H.; Kim, S.W.; Lee, Y.H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 2013, 7, 5940–5947. [Google Scholar] [CrossRef]
- Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Weng, B.; Razal, J.M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G.G.; Chen, J. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Sci. Rep. 2015, 5, 17045. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Li, B.; Cheng, J.; Guan, Q.; Wang, Z.; Ni, W.; Li, C.; Liu, H.; Wang, B. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. J. Mater. Chem. A 2016, 4, 11616–11624. [Google Scholar] [CrossRef]
- Jalili, R. Wet-Spinning of Nanostructured Fibres. Ph.D. Thesis, University of Wollongong, Dubai, UAE, March 2012. Available online: http://ro.uow.edu.au/theses/3849 (accessed on 28 November 2020).
- Okuzaki, H.; Harashina, Y.; Yan, H.H. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur. Polym. J. 2009, 45, 256–261. [Google Scholar] [CrossRef]
- Jia, X.; Yang, Y.; Wang, C.; Zhao, C.; Vijayaraghavan, R.; Macfarlane, D.R.; Forsyth, M.; Wallace, G.G. Biocompatible Ionic Liquid—Biopolymer Electrolyte-Enabled Thin and Compact Magnesium—Air Batteries. Appl. Mater. Interfaces 2014, 6, 21110–21117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granero, B.A.J.; Razal, J.M.; Wallace, G.G. Spinning Carbon Nanotube-Gel Fibers Using Polyelectrolyte Complexation. Adv. Func. Mater. 2008, 18, 3759–3764. [Google Scholar] [CrossRef]
- Tian, M.; Hu, X.; Qu, L.; Zhu, S.; Sun, Y.; Han, G. Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon N. Y. 2016, 96, 1166–1174. [Google Scholar] [CrossRef]
- Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G.G. Superelastic Hybrid CNT/Graphene Fibers for Wearable Energy Storage. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Lu, Z.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Carbon nanotube based fiber supercapacitor as wearable energy storage. Front. Mater. 2019, 6, 1–14. [Google Scholar] [CrossRef]
- Mirabedini, A.; Foroughi, J. Carbon Nanotube-Graphene Composites Fibers. In Inorganic and Composite Fibers; The Textile Institute Book Series; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 61–86. ISBN 9780081022283. [Google Scholar]
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Yang, Z.; Jia, Y.; Niu, Y.; Zhang, Y.; Zhang, C.; Li, P.; Zhu, M.; Li, Q. One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor. J. Energy Chem. 2020. [Google Scholar] [CrossRef]
- Apollo, N.V.; Jiang, J.; Cheung, W.; Baquier, S.; Lai, A.; Mirebedini, A.; Foroughi, J.; Wallace, G.G.; Shivdasani, M.N.; Prawer, S.; et al. Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System. Adv. Biosyst. 2017, 2, 1700187. [Google Scholar] [CrossRef]
- Shown, I.; Ganguly, A.; Chen, L.-C.; Chen, K.-H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26. [Google Scholar] [CrossRef]
- Garcia-Torres, J.; Crean, C. Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT:PSS fibres. Mater. Des. 2018, 155, 194–202. [Google Scholar] [CrossRef]
- Yuksel, R.; Unalan, H.E. Textile supercapacitors-based on MnO2 /SWNT/conducting polymer ternary composites: Textile-based supercapacitors. Int. J. Energy Res. 2015, 39, 2042–2052. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Liang, X.; Zhang, D.; Miao, M. Wearable supercapacitors based on conductive cotton yarns. J. Mater. Sci. 2018, 53, 14586–14597. [Google Scholar] [CrossRef]
- Kumar, N.; Ginting, R.T.; Kang, J.W. Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochim. Acta 2018, 270, 37–47. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Meng, Y.; Wei, Z. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31. [Google Scholar] [CrossRef]
- Su, F.; Miao, M. Flexible, high performance Two-Ply Yarn Supercapacitors based on irradiated Carbon Nanotube Yarn and PEDOT/PSS. Electrochim. Acta 2014, 127, 433–438. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Wang, L.; Du, X.; Zhu, S.; Zhang, X.; Qu, L.; Tian, M. Multidimensional Hierarchical Fabric-Based Supercapacitor with Bionic Fiber Microarrays for Smart Wearable Electronic Textiles. ACS Appl. Mater. Interfaces 2019, 11, 46278–46285. [Google Scholar] [CrossRef]
- Tseghai, G.B.; Mengistie, D.A.; Malengier, B.; Fante, K.A.; Van Langenhove, L. PEDOT:PSS-based conductive textiles and their applications. Sensors 2020, 20, 1881. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Seyedin, S.; Qin, S.; Lynch, P.A.; Wang, Z.; Yang, W.; Wang, X.; Razal, J.M. Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. J. Mater. Chem. A 2019, 7, 6401–6410. [Google Scholar] [CrossRef]
- Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E.S.; Dahiya, R. A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte. Adv. Mater. 2020, 32. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Pan, Z.; Zhang, J.; Zhao, J.; Wang, X.; Zhang, C.; Yao, Y.; Lu, W.; Li, Q.; et al. Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39, 219–228. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, J.; Ren, J.; Liu, N.; Chen, P.; Zhang, Y.; Deng, J.; Wang, Y.; Peng, H. Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. J. Phys. Chem. C 2016, 120, 9685–9691. [Google Scholar] [CrossRef]
- Foroughi, J.; Antiohos, D.; Wallace, G.G. Effect of post-spinning on the electrical and electrochemical properties of wet spun graphene fibre. RSC Adv. 2016, 6, 46427–46432. [Google Scholar] [CrossRef] [Green Version]
- Warren, H.; Gately, R.D.; Brien, P.O.; Iii, R.G. Electrical Conductivity, Impedance, and Percolation Behavior of Carbon Nanofiber and Carbon Nanotube Containing Gellan Gum Hydrogels. J. Polym. Phys. 2014, 52, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Hunter, C.J.C. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. J. Biomed. Mater. Res. A 2007, 82, 702–710. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Jalili, R.; Razal, J.M.; Innis, P.C.; Wallace, G.G. One-Step Wet-Spinning Process of Poly (3, 4-ethylenedioxy- thiophene): Poly (styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity. Adv. Mater. 2011, 21, 3363–3370. [Google Scholar] [CrossRef]
- Sadeghi, M.; Ghasemi, N. Synthesis and study on effect of various chemical conditions on the swelling property of collagen- g -poly (AA- co -IA) superabsorbent hydrogel. Indian J. Sci. Technol. 2012, 5, 1879–1884. [Google Scholar] [CrossRef]
- Cook, G. Polyvinyl Derivatives. In Handbook of Textile Fibres Man-Made Fibres; Woodhead Publishing Series in Textiles; Elsevier: Amsterdam, The Netherlands, 2001; pp. 392–535. [Google Scholar]
- Souier, T.; Stefancich, M.; Chiesa, M. Characterization of multi-walled carbon nanotube–polymer nanocomposites by scanning spreading resistance microscopy. Nanotechnology 2012, 23, 405704. [Google Scholar] [CrossRef]
- Jalili, R.; Razal, J.M.; Wallace, G.G. Wet-spinning of PEDOT:PSS/Functionalized-SWNTs Composite: A Facile Route Toward Production of Strong and Highly Conducting Multifunctional Fibers. Nature 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Goh, K.; Zhang, Q.; Wei, L.; Wang, H.; Jiang, W.; Chen, Y. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density. Adv. Mater. 2014, 26, 6790–6797. [Google Scholar] [CrossRef] [PubMed]
Device Configuration | Electrolyte | Capacitance | Energy Density Power Density | Cycle Life | Ref. |
---|---|---|---|---|---|
IR-CNT/PEDOT:PSS | PVA/H3PO4 | 18.5 F g−1 | — | 91% (600 cycles) | [50] |
MWNT1/PEDOT:PSS | PVA/H2SO4 | 0.46 mF cm−1 | 1.4 mWh cm−3 40 W cm−3 | 92% (10,000 cycles) | [19] |
PEDOT-coated polyester fabric | Na2SO4 solution | 0.64 F cm−2 and 5.12 F cm−3 | |||
PEDOT:PSS fiber | PVA/H3PO4 | 119 mF cm−2 | 4.13 µWh cm−2 250 µW cm−2 | [31] | |
Carbon cloth/PEDOT:PS S | PVA/H3PO4 | 73 F g−1 at 10 mV s−1 | 2.6 Wh kg−1 2880 W kg−1 | ~100% (2000 cycles) ~95% under bending | [47] |
DMSO 2 doped PEDOT:PSS coated onto cellulose/polyester cloth | Sweat (artificial and human) | 8.94 F g−1 (10 mF cm−2) at 1 mV s−1 | 1.36 Wh kg−1 (1.63 µWh cm−2) at 1.31 V 329.70 W kg−1 (0.40 mW cm−2) at 1.31 V | 87–45% (1000–5000 cycles) | [54] |
MnO2/PEDOT:PSS/oxidized CNT fibers | H2SO4 aqueous solution | 278.6 mF cm−2 | 125.37 μWh cm−2 | 92% (3000 cycles) | [55] |
Carbon/MnO2/PEDOT:PSS composite fibres | PVA/H3PO4 | 51.3 F g−1 | — | 84.2% (1000 cycles) | [44] |
MnO2/PEDOT:PSS/oxidized CNT fibers (positive electrode)/OMC 3/CNT(negative electrode) | CMC 4/Na2SO4 | 21.7 F g−1 (23.4 F cm−3) | 11.3 mWh cm−3 ~2.1 W·cm−3 | 85% (10,000 cycles) | [56] |
Sample Name | Conductivity (mS cm−1) |
---|---|
Chit wet gel | 0.38 ± 0.04 |
Chit-NaCl 0.5% w v−1 | 11.4 ± 0.2 |
Chit-NaCl 1% w v−1 | 15.1 ± 0.1 |
Chit-4% w v−1 NaOH | 1.12 ± 0.01 |
Sample Name | Young’s Modulus (GPa) | Ultimate Stress (MPa) | Ultimate Strain (%) |
---|---|---|---|
PEDOT:PSS fiber [61] | 3.3 ± 0.4 | 125.0 ± 7.1 | 15.8 ± 1.2 |
Chit-PEDOT fiber | 3.9 ± 0.1 | 94.1 ± 3.5 | 8.6 ± 1.9 |
Chit-PEDOT (+PEG) fiber | 5.2 ± 0.6 | 160.3 ± 6.8 | 7.5 ± 0.9 |
CNT- Chit-PEDOT (+PEG) fiber | 4.6 ± 0.3 | 134.8 ± 3.3 | 4.5 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirabedini, A.; Lu, Z.; Mostafavian, S.; Foroughi, J. Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. Nanomaterials 2021, 11, 3. https://doi.org/10.3390/nano11010003
Mirabedini A, Lu Z, Mostafavian S, Foroughi J. Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. Nanomaterials. 2021; 11(1):3. https://doi.org/10.3390/nano11010003
Chicago/Turabian StyleMirabedini, Azadeh, Zan Lu, Saber Mostafavian, and Javad Foroughi. 2021. "Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics" Nanomaterials 11, no. 1: 3. https://doi.org/10.3390/nano11010003
APA StyleMirabedini, A., Lu, Z., Mostafavian, S., & Foroughi, J. (2021). Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. Nanomaterials, 11(1), 3. https://doi.org/10.3390/nano11010003