Green Synthesis of Nanomaterials and Their Biological Applications
Introduction
- (i)
- Green-based processes improving the stability of nanomaterials [2];
- (ii)
- The development of green synthesis protocols for the preparation of nanomaterials with antibacterial and anticancer activity, as well as acting as catalytic reductors of nitrophenols [3];
- (iii)
- (iv)
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benelli, G. Green Synthesis of Nanomaterials. Nanomaterials 2019, 9, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedot-Toboła, M.; Dmochowska, A.; Potaniec, B.; Czajkowska, J.; Jędrzejewski, R.; Wilk-Kozubek, M.; Carolak, E.; Cybińska, J. Gallic Acid Based Black Tea Extract as a Stabilizing Agent in ZnO Particles Green Synthesis. Nanomaterials 2021, 11, 1816. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, K.K.; Rabha, B.; Pati, S.; Choudhury, B.K.; Sarkar, T.; Gogoi, S.K.; Kakati, N.; Baishya, D.; Kari, Z.A.; Edinur, H.A. Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials 2021, 11, 1999. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavoni, L.; Zeni, V.; Ricciardi, R.; Cosci, F.; Cacopardo, G.; Gendusa, S.; Spinozzi, E.; Petrelli, R.; Cappellacci, L.; et al. Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana. Nanomaterials 2020, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- Agrafioti, P.; Faliagka, S.; Lampiri, E.; Orth, M.; Pätzel, M.; Katsoulas, N.; Athanassiou, C.G. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials 2020, 10, 1658. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.; Lu, F.; Xu, Z.; Lin, Y.-S. Terahertz Metamaterial with Multiple Resonances for Biosensing Application. Nanomaterials 2020, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Xu, X.; Lin, Y.-S. Tunable Terahertz Metamaterial with Electromagnetically Induced Transparency Characteristic for Sensing Application. Nanomaterials 2021, 11, 2175. [Google Scholar] [CrossRef] [PubMed]
- Albalawi, A.E.; Alanazi, A.D.; Baharvand, P.; Sepahvand, M.; Mahmoudvand, H. High Potency of Organic and Inorganic Nanoparticles to Treat Cystic Echinococcosis: An Evidence-Based Review. Nanomaterials 2020, 10, 2538. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Wassermann, M.; Brattig, N.W. Insects dispersing taeniid eggs: Who and how? Vet. Parasitol. 2021, 295, 109450. [Google Scholar] [CrossRef] [PubMed]
- Larrieu, E.; Gavidia, C.M.; Lightowlers, M.W. Control of cystic echinococcosis: Background and prospects. Zoonoses Public Health 2019, 66, 889–899. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benelli, G. Green Synthesis of Nanomaterials and Their Biological Applications. Nanomaterials 2021, 11, 2842. https://doi.org/10.3390/nano11112842
Benelli G. Green Synthesis of Nanomaterials and Their Biological Applications. Nanomaterials. 2021; 11(11):2842. https://doi.org/10.3390/nano11112842
Chicago/Turabian StyleBenelli, Giovanni. 2021. "Green Synthesis of Nanomaterials and Their Biological Applications" Nanomaterials 11, no. 11: 2842. https://doi.org/10.3390/nano11112842
APA StyleBenelli, G. (2021). Green Synthesis of Nanomaterials and Their Biological Applications. Nanomaterials, 11(11), 2842. https://doi.org/10.3390/nano11112842