Analysis of Ionicity-Magnetism Competition in 2D-MX3 Halides towards a Low-Dimensional Materials Study Based on GPU-Enabled Computational Systems
Abstract
:1. Introduction
2. Hardware and Parallel Environment
3. Computational Details
4. Computational Performance
5. Accelerating with GPU Computing Example—FM-AFM Exchanges Competition in 2D Magnets
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270. [Google Scholar] [CrossRef] [Green Version]
- Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P.S.; Hinsche, N.F.; Gjerding, M.N.; Torelli, D.; Larsen, P.M.; Riis-Jensen, A.C.; et al. The Computational 2D Materials Database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002. [Google Scholar] [CrossRef]
- Choudhary, K.; Kalish, I.; Beams, R.; Tavazza, F. High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Sci. Rep. 2017, 7, 5179. [Google Scholar] [CrossRef] [Green Version]
- Moaied, M.; Hong, J. Size-Dependent Critical Temperature and Anomalous Optical Dispersion in Ferromagnetic CrI3 Nanotubes. Nanomaterials 2019, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Mejia-Parra, D.; Montoya-Zapata, D.; Arbelaiz, A.; Moreno, A.; Posada, J.; Ruiz-Salguero, O. Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU. Materials 2018, 11, 2078. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, Y.; Li, W.; Jiang, J.; Ji, X.; Zomaya, A.Y. Using a GPU to Accelerate a Longwave Radiative Transfer Model with Efficient CUDA-Based Methods. Appl. Sci. 2019, 9, 4039. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, A.; Kamal, D.; Batra, R.; Kim, C.; Chen, L.; Ramprasad, R. Solving the electronic structure problem with machine learning. Npj Comput. Mater. 2019, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, A.; Malkovsky, S.; Tsoy, G.; Zatsarinnyy, A.; Volovich, K. Comparative Performance Evaluation of Modern Heterogeneous High-Performance Computing Systems CPUs. Electronics 2020, 9, 1035. [Google Scholar] [CrossRef]
- Spiga, F.; Girotto, I. phiGEMM: A CPU-GPU Library for Porting Quantum ESPRESSO on Hybrid Systems. In Proceedings of the 2012 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Munich, Germany, 15–17 February 2021; IEEE Computer Society: Washington, DC, USA, 2012; pp. 368–375. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M.C. Thermal Contraction and Disordering of the Al(110) Surface. Phys. Rev. Lett. 1999, 82, 3296–3299. [Google Scholar] [CrossRef] [Green Version]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Kartsev, A.; Feya, O.D.; Bondarenko, N.; Kvashnin, A.G. Stability and magnetism of fen high-pressure phases. Phys. Chem. Chem. Phys. 2019, 21, 5262–5273. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, S.; Xiang, H.; He, Z.; Shen, J. Ferromagnetic Half-Metal Cyanamides Cr (NCN) 2 Predicted from First Principles Investigation. Materials 2020, 13, 1805. [Google Scholar] [CrossRef]
- Li, P.; Zhao, F.; Xiao, H.; Zhang, H.; Gong, H.; Zhang, S.; Liu, Z.; Zu, X. First-Principles Study of Thermo-Physical Properties of Pu-Containing Gd2Zr2O7. Nanomaterials 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Q.; Kawazoe, Y.; Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 2016, 18, 8777–8784. [Google Scholar] [CrossRef]
- Yang, H.C.; Gong, B.C.; Liu, K.; Lu, Z.Y. Quasi-degenerate magnetic states in α-RuCl3. J. Phys. Condens. Matter 2018, 31, 025803. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef]
- Griffith, J.; Orgel, L. Ligand-field theory. Q. Rev. Chem. Soc. 1957, 11, 381–393. [Google Scholar] [CrossRef]
- Anderson, P.W. New approach to the theory of superexchange interactions. Phys. Rev. 1959, 115, 2. [Google Scholar] [CrossRef]
- Wang, H.; Fan, F.; Zhu, S.; Wu, H. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL (Europhys. Lett.) 2016, 114, 47001. [Google Scholar] [CrossRef]
- Zhang, W.B.; Qu, Q.; Zhu, P.; Lam, C.H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 2015, 3, 12457–12468. [Google Scholar] [CrossRef] [Green Version]
- Kulish, V.V.; Huang, W. Single-layer metal halides MX 2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 2017, 5, 8734–8741. [Google Scholar] [CrossRef] [Green Version]
- Girerd, J.J.; Journaux, Y.; Kahn, O. Natural or orthogonalized magnetic orbitals: Two alternative ways to describe the exchange interaction. Chem. Phys. Lett. 1981, 82, 534–538. [Google Scholar] [CrossRef]
- Seyler, K.L.; Zhong, D.; Klein, D.R.; Gao, S.; Zhang, X.; Huang, B.; Navarro-Moratalla, E.; Yang, L.; Cobden, D.H.; McGuire, M.A.; et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 2018, 14, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Kashin, I.; Mazurenko, V.; Katsnelson, M.; Rudenko, A. Orbitally-resolved ferromagnetism of monolayer CrI3. 2D Mater. 2020, 7, 025036. [Google Scholar] [CrossRef] [Green Version]
- Bruno, P. Spin-wave theory of two-dimensional ferromagnets in the presence of dipolar interactions and magnetocrystalline anisotropy. Phys. Rev. B 1991, 43, 6015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Blügel, S. Systematic derivation of realistic spin models for beyond-Heisenberg solids. Phys. Rev. B 2020, 101, 024418. [Google Scholar] [CrossRef] [Green Version]
- Spišák, D.; Hafner, J. Theory of bilinear and biquadratic effect ofexchange interactions in iron: Bulk and surface. J. Magn. Magn. Mater. 1997, 168, 257–268. [Google Scholar] [CrossRef]
- Meyer, S.; Dupé, B.; Ferriani, P.; Heinze, S. Dzyaloshinskii-Moriya interaction at an antiferromagnetic interface: First-principles study of Fe/Ir bilayers on Rh (001). Phys. Rev. B 2017, 96, 094408. [Google Scholar] [CrossRef] [Green Version]
- Deák, A.; Szunyogh, L.; Ujfalussy, B. Thickness-dependent magnetic structure of ultrathin Fe/Ir (001) films: From spin-spiral states toward ferromagnetic order. Phys. Rev. B 2011, 84, 224413. [Google Scholar] [CrossRef] [Green Version]
- Van der Ziel, J. Spectrum of first-nearest-neighbor Cr 3+ pairs in ruby. Phys. Rev. B 1974, 9, 2846. [Google Scholar] [CrossRef]
- Kartsev, A.; Augustin, M.; Evans, R.F.; Novoselov, K.S.; Santos, E.J. Biquadratic exchange interactions in two-dimensional magnets. Npj Comput. Mater. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Takagi, H.; Takayama, T.; Jackeli, G.; Khaliullin, G.; Nagler, S.E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 2019, 1, 264–280. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Makogonov, S.V.; Korolev, S.P. The Information Infrastructure for Collective Scientific Work in the Far East of Russia. Sci. Tech. Inf. Process. 2017, 44, 302–304. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartsev, A.; Malkovsky, S.; Chibisov, A. Analysis of Ionicity-Magnetism Competition in 2D-MX3 Halides towards a Low-Dimensional Materials Study Based on GPU-Enabled Computational Systems. Nanomaterials 2021, 11, 2967. https://doi.org/10.3390/nano11112967
Kartsev A, Malkovsky S, Chibisov A. Analysis of Ionicity-Magnetism Competition in 2D-MX3 Halides towards a Low-Dimensional Materials Study Based on GPU-Enabled Computational Systems. Nanomaterials. 2021; 11(11):2967. https://doi.org/10.3390/nano11112967
Chicago/Turabian StyleKartsev, Alexey, Sergey Malkovsky, and Andrey Chibisov. 2021. "Analysis of Ionicity-Magnetism Competition in 2D-MX3 Halides towards a Low-Dimensional Materials Study Based on GPU-Enabled Computational Systems" Nanomaterials 11, no. 11: 2967. https://doi.org/10.3390/nano11112967