Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation
Abstract
:1. Introduction
- -
- Methodological simplicity (because each manipulation stage reduces the accuracy of the final measurements)
- -
- The absence of chemical modifications or harsh treatments that may affect the resulting preparations’ interaction parameters and properties
- -
- Productivity, providing simultaneous testing of many preparations and reliable results after the statistical processing of replicates
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of GNPs
2.3. Determination of the Dimensional Characteristics of GNPs by Transmission Electron Microscopy (TEM)
2.4. Spectral Characteristics of GNPs
2.5. Obtaining GNP Conjugates with Antibodies against CRPs of Different Compositions
2.6. Determination of the Antibody Number Bound to GNPs
2.7. Determination of the Number of Reactive Antibodies on the GNP Surface
2.8. Fluorescence Measurement
3. Results
3.1. Method for Determining the Composition of Protein–GNP Conjugates by Intrinsic Protein Fluorescence
3.2. Characterization of GNP Preparations
3.3. Synthesis of Antibody Conjugates with GNPs
3.4. Calculation of the Numbers of Immunoglobulin G Sorbed on GNPs
3.5. Determination of the Antigen-Binding Activity of Antibodies after Conjugation
3.6. Comparison of the Obtained Parameters with Earlier Published Ones
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wild, D. The Immunoassay Handbook. Theory and Applications of Ligand Binding, ELISA and Related Techniques, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; p. 1013. [Google Scholar]
- Farka, Z.; Jurik, T.; Kovář, D.; Trnkova, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, W.; Zhou, Y. Signal amplification in immunoassays by using noble metal nanoparticles: A review. Microchim. Acta 2019, 186, 859. [Google Scholar] [CrossRef]
- Jackman, J.A.; Ferhan, A.R.; Cho, N.J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 2017, 46, 3615–3660. [Google Scholar] [CrossRef] [PubMed]
- Makaraviciute, A.; Ramanaviciene, A. Site-directed antibody immobilization techniques for immunosensors. Biosens. Bioelectron. 2013, 50, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef] [Green Version]
- Park, M. Orientation control of the molecular recognition layer for improved sensitivity: A review. BioChip J. 2019, 13, 82–94. [Google Scholar] [CrossRef]
- Iijima, M.; Kuroda, S.I. Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens. Bioelectron. 2017, 89, 810–821. [Google Scholar] [CrossRef]
- Shen, M.; Rusling, J.F.; Dixit, C.K. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal. Chem. 2011, 83, 4453–4488. [Google Scholar] [CrossRef]
- Kaur, K.; Forrest, J.A. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Langmuir 2012, 28, 2736–2744. [Google Scholar] [CrossRef]
- De Roe, C.; Courtoy, P.J.; Baudhuin, P. A model of protein-colloidal gold interactions. J. Histochem. Cytochem. 1987, 35, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Sotnikov, D.V.; Zherdev, A.V.; Dzantiev, B.B. Development and application of a label-free fluorescence method for determining the composition of gold nanoparticle–protein conjugates. Int. J. Mol. Sci. 2015, 16, 907–923. [Google Scholar] [CrossRef] [Green Version]
- Filbrun, S.L.; Driskell, J.D. A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles. Analyst 2016, 141, 3851–3857. [Google Scholar] [CrossRef]
- Hong, S.H.; Kim, M.J.; Ahn, J.H.; Yeo, W.S. Multiplexed quantification of surface-bound proteins on gold nanoparticles. Anal. Methods 2013, 5, 3816–3818. [Google Scholar] [CrossRef]
- Zhang, D.; Neumann, O.; Wang, H.; Yuwono, V.M.; Barhoumi, A.; Perham, M.; Hartgerink, J.D.; Wittung-Stafshede, P.; Halas, N.J. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 2009, 9, 666–671. [Google Scholar] [CrossRef]
- Bell, N.C.; Minelli, C.; Shard, A.G. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. Anal. Methods 2013, 5, 4591–4601. [Google Scholar] [CrossRef]
- Mullen, D.G.; Desai, A.M.; Waddell, J.N.; Cheng, X.M.; Kelly, C.V.; McNerny, D.Q.; Majoros, I.J.; Baker, J.R., Jr.; Sander, L.M.; Orr, B.G.; et al. The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles. Bioconjugate Chem. 2008, 19, 1748–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.; Parak, W.J. Gel electrophoresis of gold-DNA nanoconjugates. J. Biomed. Biotechnol. 2008, 2007, 026796. [Google Scholar] [CrossRef]
- Lees, E.E.; Gunzburg, M.J.; Nguyen, T.L.; Howlett, G.J.; Rothacker, J.; Nice, E.C.; Clayton, A.H.A.; Mulvaney, P. Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Lett. 2008, 8, 2883–2890. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Hackley, V.A. Fractionation and characterization of gold nanoparticles in aqueous solution: Asymmetric-flow field flow fractionation with MALS, DLS, and UV–Vis detection. Anal. Bioanal. Chem. 2010, 398, 2003–2018. [Google Scholar] [CrossRef]
- Byzova, N.A.; Safenkova, I.V.; Slutskaya, E.S.; Zherdev, A.V.; Dzantiev, B.B. Less is more: A comparison of antibody–gold nanoparticle conjugates of different ratios. Bioconjugate Chem. 2017, 28, 2737–2746. [Google Scholar] [CrossRef]
- Babaei-Afrapoli, Z.; Faridi-Majidi, R.; Negahdari, B.; Dabir, K.; Tavoosidana, G. Evaluating gold nanoparticles parameters in competitive immunochromatographich assay via dot blot and Bradford assay as new approaches. Microchem. J. 2021, 170, 106525. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Li, A.; Feng, S.; Qu, Z.; Xu, F. The effect of report particle properties on lateral flow assays: A mathematical model. Sens. Actuators B Chem. 2017, 248, 699–707. [Google Scholar] [CrossRef]
- Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J. Immunol. Methods 2010, 357, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Zvereva, E.A.; Byzova, N.A.; Sveshnikov, P.G.; Zherdev, A.V.; Dzantiev, B.B. Cut-off on demand: Adjustment of the threshold level of an immunochromatographic assay for chloramphenicol. Anal. Methods 2015, 7, 6378–6384. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, D.; Salmain, M.; Liedberg, B.; Boujday, S. Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019, 204, 875–881. [Google Scholar] [CrossRef]
- Tripathi, K.; Driskell, J.D. Quantifying bound and active antibodies conjugated to gold nanoparticles: A comprehensive and robust approach to evaluate immobilization chemistry. ACS Omega 2018, 3, 8253–8259. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Radchenko, A.S.; Zherdev, A.V.; Dzantiev, B.B. Determination of the composition and functional activity of the conjugates of colloidal gold and antibodies. Eurasian J. Anal. Chem. 2016, 11, 169–179. [Google Scholar] [CrossRef]
- Ruiz, G.; Tripathi, K.; Okyem, S.; Driskell, J.D. pH impacts the orientation of antibody adsorbed onto gold nanoparticles. Bioconjugate Chem. 2019, 30, 1182–1191. [Google Scholar] [CrossRef]
- Zherdev, A.V.; Sotnikov, D.V.; Dzantiev, B.B. Quantitative regularities of protein immobilization on the surfaces of gold nanoparticles. AIP Conf. Proc. 2020, 2216, 040023. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Berlina, A.N.; Ivanov, V.S.; Zherdev, A.V.; Dzantiev, B.B. Adsorption of proteins on gold nanoparticles: One or more layers? Colloids Surf. B Biointerfaces 2019, 173, 557–563. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer Science+Business Media: New York, NY, USA, 2010; p. 954. [Google Scholar]
- Hellmann, N.; Schneider, D. Hands on: Using tryptophan fluorescence spectroscopy to study protein structure. In Protein Supersecondary Structures; Humana Press: New York, NY, USA, 2019; pp. 379–401. [Google Scholar]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Wuithschick, M.; Birnbaum, A.; Witte, S.; Sztucki, M.; Vainio, U.; Pinna, N.; Rademann, K.; Emmerling, F.; Kraehnert, R.; Polte, J. Turkevich in new robes: Key questions answered for the most common gold nanoparticle synthesis. ACS Nano 2015, 9, 7052–7071. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Avan, A.; Sany, S.B.T.; Ghayour-Mobarhan, M.; Rahimi, H.R.; Tajfard, M.; Ferns, G. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. J. Cell. Physiol. 2018, 233, 8508–8525. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.Y.; Yao, Y.M. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front. Immunol. 2018, 9, 1302. [Google Scholar] [CrossRef] [Green Version]
- Byzova, N.A.; Zherdev, A.V.; Pridvorova, S.M.; Dzantiev, B.B. Development of rapid immunochromatographic assay for D-dimer detection. Appl. Biochem. Microbiol. 2019, 55, 305–312. [Google Scholar] [CrossRef]
- Engelborghs, Y. Correlating protein structure and protein fluorescence. J. Fluoresc. 2003, 13, 9–16. [Google Scholar] [CrossRef]
- Vivian, J.T.; Callis, P.R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001, 80, 2093–2109. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Gao, K.; Ou, Q.; Fu, X.; Man, S.-Q.; Guo, J.; Liu, Y. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV–vis spectral properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 513–520. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques, 3rd ed.; Academic Press: New York, NY, USA, 2013; 1200p, ISBN 9780123822390. [Google Scholar]
- Geoghegan, W.D.; Ackerman, G.A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem. 1977, 25, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, M.; Pourmand, M.R.; Faridi-Majidi, R.; Heiat, M.; Mohammad Nezhady, M.A.; Safari, M.; Noorbakhsh, F.; Baharifar, H. Optimising effective parameters to improve performance quality in lateral flow immunoassay for detection of PBP2a in methicillin-resistant Staphylococcus aureus (MRSA). J. Exp. Nanosci. 2020, 15, 266–279. [Google Scholar] [CrossRef]
- Pham, V.D.; Hoang, H.; Phan, T.H.; Conrad, U.; Chu, H.H. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 045017. [Google Scholar] [CrossRef]
- Awsiuk, K.; Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Dabczynski, P.; Kostruba, A.; Ohar, H.; Shymborska, Y.; Nastyshyn, S.; Budkowski, A. Temperature-controlled orientation of proteins in temperature-responsive grafted polymer brushes. Poly(butylmethacrylate) versus poly(butylacrylate): Morphology, wetting and protein adsorption. Biomacromolecules 2019, 20, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Gajos, K.; Szafraniec, K.; Petrou, P.; Budkowski, A. Surface density dependent orientation and immunological recognition of antibody in silicon: TOF-SIMS and surface analysis of two covalent immobilization methods. Appl. Surf. Sci. 2020, 518, 146269. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A.; Patri, A.K.; Zheng, J.; Clogston, J.D.; Ayub, N.; Aggarwal, P.; Neun, B.W.; Hall, J.B.; McNeil, S.E. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 2009, 5, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A.; Lundqvist, M. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczyk, D.; Bombelli, F.B.; Monopoli, M.P.; Lynch, I.; Dawson, K.A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768. [Google Scholar] [CrossRef]
- Ruiz, G.; Ryan, N.; Rutschke, K.; Awotunde, O.; Driskell, J.D. Antibodies irreversibly adsorb to gold nanoparticles and resist displacement by common blood proteins. Langmuir 2019, 35, 10601–10609. [Google Scholar] [CrossRef]
- Thilagam, R.; Gnanamani, A. Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. Appl. Nanosci. 2020, 10, 1879–1892. [Google Scholar] [CrossRef]
- Parolo, C.; Sena-Torralba, A.; Bergua, J.F.; Calucho, E.; Fuentes-Chust, C.; Hu, L.; Rivas, L.; Alvarez-Diduk, R.; Nguyen, E.P.; Cinti, S.; et al. Tutorial: Design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 2020, 15, 3788–3816. [Google Scholar] [CrossRef] [PubMed]
- Trilling, A.K.; Beekwilder, J.; Zuilhof, H. Antibody orientation on biosensor surfaces: A minireview. Analyst 2013, 138, 1619–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | Absorption Maximum, nm | GNP Diameter According to Spectral Data, nm | GNP Diameter According to TEM Data, nm | Ellipticity |
---|---|---|---|---|
1 | 518 | 14 | 14.8 ± 1.1 | 1.18 ± 0.29 |
2 | 521 | 23 | 23.5 ± 1.5 | 1.19 ± 0.21 |
3 | 523 | 28 | 28.6 ± 2.3 | 1.22 ± 0.36 |
4 | 527 | 35 | 34.0 ± 2.5 | 1.25 ± 0.31 |
5 | 530 | 42 | 43.3 ± 2.9 | 1.26 ± 0.32 |
6 | 534 | 55 | 54.5 ± 7.9 | 1.65 ± 0.53 |
No | GNP Diameter, nm | GNP Surface Area, nm2 | IgG Number Per One GNP (Monolayer, Theoretically), pcs | [GNP], pcs/mL | [IgG] Monolayer, pcs/mL | [IgG] Monolayer, μg/mL |
---|---|---|---|---|---|---|
1 | 14.8 | 688 | 28 | 1.77 × 1012 | 49.6 × 1012 | 12.0 |
2 | 23.5 | 1734 | 69 | 4.43 × 1011 | 30.6 × 1012 | 7.40 |
3 | 28.6 | 2568 | 103 | 0.25 × 1012 | 25.8 × 1012 | 6.23 |
4 | 34.0 | 3630 | 145 | 1.46 × 1011 | 21.1 × 1012 | 5.12 |
5 | 43.3 | 5887 | 235 | 0.71 × 1011 | 16.7 × 1012 | 4.04 |
6 | 54.5 | 9327 | 373 | 0.35 × 1011 | 13.1 × 1012 | 3.16 |
GNP Average Diameter, nm | IgG Per One GNP | IgG Valences in the Conjugate, nM | Bound CRP Max, nM | Active Valences, % |
---|---|---|---|---|
14.8 | 13.2 | 379.1 | 66.2 | 17.5 |
23.5 | 28.1 | 191.4 | 41.4 | 21.6 |
28.6 | 43.0 | 156.7 | 36.5 | 23.3 |
34.0 | 77.0 | 153.0 | 33.8 | 22.1 |
43.3 | 56.0 | 53.7 | 17.8 | 33.1 |
54.5 | 84.9 | 37.4 | 12.7 | 34.0 |
IgG Added, μg/mL | IgG in Supernatant, μg/mL | IgG in Conjugate, μg/mL | Bound IgG, % |
---|---|---|---|
7.4 | 2.9 | 4.5 | 60.5 |
3.7 | 1.0 | 2.7 | 72.6 |
1.85 | 0 | 1.85 | 100 |
IgG in the Conjugate, μg/mL | Concentration of Antigen-Binding Sites in the Conjugate, nM | Maximum Bound CRP, nM | Active Antigen-Binding Sites, % |
---|---|---|---|
4.5 | 276 | 50.3 | 18 |
2.7 | 166 | 35.4 | 21 |
1.85 | 114 | 19.0 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotnikov, D.V.; Byzova, N.A.; Zherdev, A.V.; Dzantiev, B.B. Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation. Nanomaterials 2021, 11, 3117. https://doi.org/10.3390/nano11113117
Sotnikov DV, Byzova NA, Zherdev AV, Dzantiev BB. Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation. Nanomaterials. 2021; 11(11):3117. https://doi.org/10.3390/nano11113117
Chicago/Turabian StyleSotnikov, Dmitriy V., Nadezhda A. Byzova, Anatoly V. Zherdev, and Boris B. Dzantiev. 2021. "Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation" Nanomaterials 11, no. 11: 3117. https://doi.org/10.3390/nano11113117
APA StyleSotnikov, D. V., Byzova, N. A., Zherdev, A. V., & Dzantiev, B. B. (2021). Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation. Nanomaterials, 11(11), 3117. https://doi.org/10.3390/nano11113117