Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aharonovich, I.; Englund, D.; Toth, M. Solid-State Single-Photon Emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Lohrmann, A.; Johnson, B.C.; McCallum, J.C.; Castelletto, S. A Review on Single Photon Sources in Silicon Carbide. Rep. Prog. Phys. 2017, 80, 034502. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, Y.; Chou, J.-P.; Gali, A. Material Platforms for Defect Qubits and Single-Photon Emitters. Appl. Phys. Rev. 2020, 7, 031308. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Gorelli, F.; Santoro, M.; Fabbri, N.; Hajeb, A.; Sciortino, S.; Palla, L.; Czelusniak, C.; Massi, M.; Taccetti, F.; et al. Robust Luminescence of the Silicon-Vacancy Center in Diamond at High Temperatures. AIP Adv. 2015, 5, 127117. [Google Scholar] [CrossRef] [Green Version]
- Stenger, I.; Pinault-Thaury, M.-A.; Kociniewski, T.; Lusson, A.; Chikoidze, E.; Jomard, F.; Dumont, Y.; Chevallier, J.; Barjon, J. Impurity-to-Band Activation Energy in Phosphorus Doped Diamond. J. Appl. Phys. 2013, 114, 073711. [Google Scholar] [CrossRef]
- Fedyanin, D.Y.; Agio, M. Ultrabright Single-Photon Source on Diamond with Electrical Pumping at Room and High Temperatures. New J. Phys. 2016, 18, 073012. [Google Scholar] [CrossRef]
- Khramtsov, I.A.; Agio, M.; Fedyanin, D.Y. Electrical Excitation of Color Centers in Diamond: Toward Practical Single-Photon Sources. AIP Conf. Proc. 2021, 2359, 020015. [Google Scholar]
- Petruzzella, M.; Pagliano, F.M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F.W.M.; van der Heijden, R.W.; Fiore, A. Electrically Driven Quantum Light Emission in Electromechanically Tuneable Photonic Crystal Cavities. Appl. Phys. Lett. 2017, 111, 251101. [Google Scholar] [CrossRef]
- Wolfowicz, G.; Heremans, F.J.; Anderson, C.P.; Kanai, S.; Seo, H.; Gali, A.; Galli, G.; Awschalom, D.D. Quantum Guidelines for Solid-State Spin Defects. Nat. Rev. Mater. 2021, 6, 906–925. [Google Scholar] [CrossRef]
- Lohrmann, A.; Iwamoto, N.; Bodrog, Z.; Castelletto, S.; Ohshima, T.; Karle, T.J.; Gali, A.; Prawer, S.; McCallum, J.C.; Johnson, B.C. Single-Photon Emitting Diode in Silicon Carbide. Nat. Commun. 2015, 6, 7783. [Google Scholar] [CrossRef]
- Evwaraye, A.O.; Smith, S.R.; Mitchel, W.C. Shallow and Deep Levels Inn-type 4H-SiC. J. Appl. Phys. 1996, 79, 7726–7730. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Henry, A.; Janzén, E. Ionization Energies of Phosphorus and Nitrogen Donors and Aluminum Acceptors in 4H silicon Carbide from the Donor-Acceptor Pair Emission. Phys. Rev. B 2005, 71, 241201. [Google Scholar] [CrossRef]
- Khramtsov, I.A.; Vyshnevyy, A.A.; Fedyanin, D.Y. Enhancing the Brightness of Electrically Driven Single-Photon Sources Using Color Centers in Silicon Carbide. NPJ Quantum Inf. 2018, 4, 15. [Google Scholar] [CrossRef]
- Khramtsov, I.A.; Fedyanin, D.Y. Single-Photon Sources Based on Novel Color Centers in Silicon Carbide P-I-N Diodes: Combining Theory and Experiment. Nano-Micro Lett. 2021, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Fradkin, I.M.; Agio, M.; Fedyanin, D.Y. Highly-efficient extraction of single photons from single SiV centers in Diamond using plasmonic nanoantenna. In Frontiers in Optics/Laser Science, OSA Technical Digest; Lee, B., Mazzali, C., Corwin, K., Jason Jones, R., Eds.; Optical Society of America: Washington, DC, USA, 2020; p. FW1C.2. [Google Scholar] [CrossRef]
- Lin, X.; Dai, X.; Pu, C.; Deng, Y.; Niu, Y.; Tong, L.; Fang, W.; Jin, Y.; Peng, X. Electrically-Driven Single-Photon Sources Based on Colloidal Quantum Dots with near-Optimal Antibunching at Room Temperature. Nat. Commun. 2017, 8, 1132. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.; Frost, T.; Hazari, A.; Bhattacharya, P. Electrically Pumped Single-Photon Emission at Room Temperature from a Single InGaN/GaN Quantum Dot. Appl. Phys. Lett. 2014, 105, 141109. [Google Scholar] [CrossRef]
- Zywietz, A.; Karch, K.; Bechstedt, F. Influence of Polytypism on Thermal Properties of Silicon Carbide. Phys. Rev. B 1996, 54, 1791. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.-F.; Wang, J.-F.; Li, Q.; Cheng, Z.-D.; Cui, J.-M.; Liu, W.-Z.; Xu, J.-S.; Li, C.-F.; Guo, G.-C. Coherent Control of Defect Spins in Silicon Carbide above 550 K. Phys. Rev. Appl. 2018, 10, 044042. [Google Scholar] [CrossRef] [Green Version]
- Widmann, M.; Lee, S.-Y.; Rendler, T.; Son, N.T.; Fedder, H.; Paik, S.; Yang, L.-P.; Zhao, N.; Yang, S.; Booker, I.; et al. Coherent Control of Single Spins in Silicon Carbide at Room Temperature. Nat. Mater. 2015, 14, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Kwiat, P.G. Focus on Quantum Cryptography. New J. Phys. 2002, 4, 002. [Google Scholar] [CrossRef]
- Anisimov, A.N.; Simin, D.; Soltamov, V.A.; Lebedev, S.P.; Baranov, P.G.; Astakhov, G.V.; Dyakonov, V. Optical Thermometry Based on Level Anticrossing in Silicon Carbide. Sci. Rep. 2016, 6, 33301. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, X.; Zhou, Y.; Li, K.; Wang, Z.; Peddibhotla, P.; Liu, F.; Bauerdick, S.; Rudzinski, A.; Liu, Z.; et al. Scalable Fabrication of Single Silicon Vacancy Defect Arrays in Silicon Carbide Using Focused Ion Beam. ACS Photonics 2017, 4, 1054–1059. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, F.; Soltamov, V.A.; Väth, S.; Baranov, P.G.; Mokhov, E.N.; Astakhov, G.V.; Dyakonov, V. Silicon Carbide Light-Emitting Diode as a Prospective Room Temperature Source for Single Photons. Sci. Rep. 2013, 3, 1637. [Google Scholar] [CrossRef] [Green Version]
- Koehl, W.F.; Buckley, B.B.; Heremans, F.J.; Calusine, G.; Awschalom, D.D. Room Temperature Coherent Control of Defect Spin Qubits in Silicon Carbide. Nature 2011, 479, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Khramtsov, I.A.; Fedyanin, D.Y. Toward Ultrafast Tuning and Triggering Single-Photon Electroluminescence of Color Centers in Silicon Carbide. ACS Appl. Electron. Mater. 2019, 1, 1859–1865. [Google Scholar] [CrossRef] [Green Version]
- Widmann, M.; Niethammer, M.; Makino, T.; Rendler, T.; Lasse, S.; Ohshima, T.; Hassan, J.U.; Son, N.T.; Lee, S.-Y.; Wrachtrup, J. Bright Single Photon Sources in Lateral Silicon Carbide Light Emitting Diodes. Appl. Phys. Lett. 2018, 112, 231103. [Google Scholar] [CrossRef]
- Sato, S.-I.; Honda, T.; Makino, T.; Hijikata, Y.; Lee, S.-Y.; Ohshima, T. Room Temperature Electrical Control of Single Photon Sources at 4H-SiC Surface. ACS Photonics 2018, 5, 3159–3165. [Google Scholar] [CrossRef]
- Khramtsov, I.A.; Fedyanin, D.Y. Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors. Materials 2019, 12, 1972. [Google Scholar] [CrossRef] [Green Version]
- Khramtsov, I.A.; Fedyanin, D.Y. Superinjection in Diamond P-I-N Diodes: Bright Single-Photon Electroluminescence of Color Centers beyond the Doping Limit. Phys. Rev. Appl. 2019, 12, 024013. [Google Scholar] [CrossRef] [Green Version]
- Fedyanin, D.Y. Optoelectronics of Color Centers in Diamond and Silicon Carbide: From Single-Photon Luminescence to Electrically Controlled Spin Qubits. Adv. Quantum Technol. 2021, 4, 2100048. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; Wiley-Interscience: Hoboken, NJ, USA, 1981. [Google Scholar]
- Shur, M. Physics of Semiconductor Devices; Pearson: London, UK, 1990. [Google Scholar]
- Khramtsov, I.A.; Fedyanin, D.Y. Superinjection in Diamond Homojunction P-I-N Diodes. Semicond. Sci. Technol. 2019, 34, 03LT03. [Google Scholar] [CrossRef] [Green Version]
- Khramtsov, I.A.; Agio, M.; Fedyanin, D.Y. Dynamics of Single-Photon Emission from Electrically Pumped Color Centers. Phys. Rev. Appl. 2017, 8, 024031. [Google Scholar] [CrossRef] [Green Version]
- Abakumov, V.N.; Perel, V.I.; Yassievich, I.N. Nonradiative Recombination in Semiconductors; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Alkauskas, A.; Dreyer, C.E.; Lyons, J.L.; Van de Walle, C.G. Role of Excited States in Shockley-Read-Hall Recombination in Wide-Band-Gap Semiconductors. Phys. Rev. B 2016, 93, 201304. [Google Scholar] [CrossRef] [Green Version]
- Friedrichs, P.; Kimoto, T.; Ley, L.; Pensl, G. Silicon Carbide: Volume 1: Growth, Defects, and Novel Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Atatüre, M.; Englund, D.; Vamivakas, N.; Lee, S.-Y.; Wrachtrup, J. Material Platforms for Spin-Based Photonic Quantum Technologies. Nat. Rev. Mater. 2018, 3, 38–51. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Salter, P.S.; Niethammer, M.; Widmann, M.; Kaiser, F.; Nagy, R.; Morioka, N.; Babin, C.; Erlekampf, J.; Berwian, P.; et al. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett. 2019, 19, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khramtsov, I.A.; Fedyanin, D.Y. Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications. Nanomaterials 2021, 11, 3177. https://doi.org/10.3390/nano11123177
Khramtsov IA, Fedyanin DY. Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications. Nanomaterials. 2021; 11(12):3177. https://doi.org/10.3390/nano11123177
Chicago/Turabian StyleKhramtsov, Igor A., and Dmitry Yu. Fedyanin. 2021. "Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications" Nanomaterials 11, no. 12: 3177. https://doi.org/10.3390/nano11123177
APA StyleKhramtsov, I. A., & Fedyanin, D. Y. (2021). Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications. Nanomaterials, 11(12), 3177. https://doi.org/10.3390/nano11123177