A Selective Etching Route for Large-Scale Fabrication of β-Ga2O3 Micro-/Nanotube Arrays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of GaN Micro-/Nanowire Arrays
2.2. Fabrication of β-Ga2O3 Micro-/Nanotube Arrays
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, P.C.; Fan, Z.; Tseng, W.Y.; Rajagopal, A.; Lu, J.G. β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor. Appl. Phys. Lett. 2005, 87, 222102. [Google Scholar] [CrossRef]
- Ahn, S.; Ren, F.; Kim, J.; Oh, S.; Kim, J.; Mastro, M.A.; Pearton, S.J. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl. Phys. Lett. 2016, 109, 062102. [Google Scholar] [CrossRef]
- Chen, J.X.; Li, X.X.; Tao, J.J.; Cui, H.Y.; Huang, W.; Ji, Z.G.; Sai, Q.L.; Xia, C.T.; Lu, H.L.; Zhang, D.W. Fabrication of a Nb-Doped β-Ga2O3 Nanobelt Field-Effect Transistor and Its Low-Temperature Behavior. ACS Appl. Mater. Interfaces 2020, 12, 8437–8445. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.; Mastro, M.A.; Kim, J. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics. Phys. Chem. Chem. Phys. 2016, 18, 15760–15764. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Lu, X.T.; Ma, M.R.; Tong, X.W.; Zhang, Z.X.; Wang, L.; Wu, C.Y.; Yang, W.H.; Luo, L.B. Catalyst-Free Vapor-Solid Deposition Growth of β-Ga2O3 Nanowires for DUV Photodetector and Image Sensor Application. Adv. Opt. Mater. 2019, 7, 1901257. [Google Scholar] [CrossRef]
- He, C.; Guo, D.; Chen, K.; Wang, S.; Shen, J.; Zhao, N.; Liu, A.; Zheng, Y.; Li, P.; Wu, Z.; et al. α-Ga2O3 Nanorod Array-Cu2O Microsphere p-n Junctions for Self-Powered Spectrum-Distinguishable Photodetectors. ACS Appl. Nano Mater. 2019, 2, 4095–4103. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, B.; Hu, G.; Fang, X.; Wang, H.; Wang, L.; Luo, J.; Han, X.; Wang, X.; Pan, C.; et al. Piezo-Phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire. Adv. Funct. Mater. 2018, 28, 1706379. [Google Scholar] [CrossRef]
- Rex, J.P.; Kwong, Y.F.; San, L.H. The influence of deposition temperature on the structural, morphological and optical properties of micro-size structures of beta-Ga2O3. Results Phys. 2019, 14, 102475. [Google Scholar] [CrossRef]
- Bui, Q.C.; Largeau, L.; Morassi, M.; Jegenyes, N.; Mauguin, O.; Travers, L.; Lafosse, X.; Dupuis, C.; Harmand, J.C.; Tchernycheva, M.; et al. GaN/Ga2O3 Core/Shell Nanowires Growth: Towards High Response Gas Sensors. Appl. Sci. 2019, 9, 3528. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.G.; Kim, W.S.; Kim, D.H.; Hong, S.H. Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties. J. Mater. Res. 2011, 26, 2322–2327. [Google Scholar] [CrossRef]
- Chandiran, A.K.; Tetreault, N.; Humphry-Baker, R.; Kessler, F.; Baranoff, E.; Yi, C.; Nazeeruddin, M.K.; Grätzel, M. Subnanometer Ga2O3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells. Nano Lett. 2012, 12, 3941–3947. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Chou, L.J.; Lin, G.R.; Bando, Y.; Golberg, D. Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires. Nano Lett. 2008, 8, 3081–3085. [Google Scholar] [CrossRef]
- Cheng, B.; Samulski, E.T. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 2001, 11, 2901–2902. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Li, Q.; Cao, X. Preparation of Ga2O3 nanoribbons and tubes by electrospinning. J. Cryst. Growth 2007, 308, 180–184. [Google Scholar] [CrossRef]
- Gong, N.W.; Lu, M.Y.; Wang, C.Y.; Chen, Y.; Chen, L.J. Au(Si)-filled β-Ga2O3 nanotubes as wide range high temperature nanothermometers. Appl. Phys. Lett. 2008, 92, 073101. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Y.; Zhou, Q.; Su, Y.; Xiao, H.; Zhu, L. Temperature dependence of Ga2O3 micro/nanostructures via vapor phase growth. Mater. Chem. Phys. 2007, 103, 14–18. [Google Scholar] [CrossRef]
- Braniste, T.; Dragoman, M.; Zhukov, S.; Aldrigo, M.; Ciobanu, V.; Iordanescu, S.; Alyabyeva, L.; Fumagalli, F.; Ceccone, G.; Raevschi, S.; et al. Aero-Ga2O3 Nanomaterial Electromagnetically Transparent from Microwaves to Terahertz for Internet of Things Applications. Nanomaterials 2020, 10, 1047. [Google Scholar] [CrossRef]
- Liang, H.; Chen, Y.; Xia, X.; Zhang, C.; Shen, R.; Liu, Y.; Luo, Y.; Du, G. A preliminary study of SF6 based inductively coupled plasma etching techniques for beta gallium trioxide thin film. Mater. Sci. Semicond. Proc. 2015, 39, 582–586. [Google Scholar] [CrossRef]
- Hogan, J.E.; Kaun, S.W.; Ahmadi, E.; Oshima, Y.; Speck, J.S. Chlorine-based dry etching of β-Ga2O3. Semicond. Sci. Technol. 2016, 31, 065006. [Google Scholar] [CrossRef]
- Yang, J.; Ahn, S.; Ren, F.; Pearton, S.; Khanna, R.; Bevlin, K.; Geerpuram, D.; Kuramata, A. Inductively coupled plasma etching of bulk, single-crystal Ga2O3. J. Vac. Sci. Technol. B 2017, 35, 031205. [Google Scholar] [CrossRef]
- Shah, A.P.; Bhattacharya, A. Inductively coupled plasma reactive-ion etching of β-Ga2O3: Comprehensive investigation of plasma chemistry and temperature. J. Vac. Sci. Technol. A 2017, 35, 041301. [Google Scholar] [CrossRef]
- Lin, Z.; Xiu, X.; Zhang, S.; Hua, X.; Xie, Z.; Zhang, R.; Han, P.; Zheng, Y. Arrays of GaN nano-pillars fabricated by nickel nano-island mask. Mater. Lett. 2013, 108, 250–252. [Google Scholar] [CrossRef]
- Zhang, L.; Xiu, X.; Li, Y.; Zhu, Y.; Hua, X.; Xie, Z.; Tao, T.; Liu, B.; Chen, P.; Zhang, R.; et al. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays. Nanophotonics 2020, 9, 4497–4503. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.W.; Xiu, X.Q.; Zhang, L.Y.; Hua, X.M.; Xie, Z.L.; Tao, T.; Liu, B.; Chen, P.; Zhang, R.; et al. Synthesis and characterization of β-Ga2O3@GaN nanowires. Chin. Phys. B 2019, 28, 028104. [Google Scholar] [CrossRef]
- Yamada, T.; Ito, J.; Asahara, R.; Watanabe, K.; Nozaki, M.; Nakazawa, S.; Anda, Y.; Ishida, M.; Ueda, T.; Yoshigoe, A.; et al. Comprehensive study on initial thermal oxidation of GaN (0001) surface and subsequent oxide growth in dry oxygen ambient. J. Appl. Phys. 2017, 121, 035303. [Google Scholar] [CrossRef]
- Choi, J.H.; Ham, M.H.; Lee, W.; Myoung, J.M. Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation. Solid State Commun. 2007, 142, 437–440. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Xiu, X.; Xin, G.; Xie, Z.; Tao, T.; Liu, B.; Chen, P.; Zhang, R.; Zheng, Y. Preparation of vertically aligned GaN@Ga2O3 core-shell heterostructured nanowire arrays and their photocatalytic activity for degradation of Rhodamine B. Superlattices Microstruct. 2020, 143, 106556. [Google Scholar] [CrossRef]
- Xie, Z.; Zhou, Y.; Song, L.; Liu, B.; Hua, X.; Xiu, X.; Zhang, R.; Zheng, Y. Structural properties of GaN(0001) epitaxial layers revealed by high resolution X-ray diffraction. Sci. China-Phys. Mech. Astron. 2010, 1, 68–71. [Google Scholar] [CrossRef]
- Yang, G.F.; Chen, P.; Wu, Z.L.; Yu, Z.G.; Zhao, H.; Liu, B.; Hua, X.M.; Xie, Z.L.; Xiu, X.Q.; Han, P.; et al. Characteristics of GaN thin films by inductively coupled plasma etching with Cl2/BCl3 and Cl2/Ar. J. Mater. Sci.-Mater. Electron. 2012, 23, 1224–1228. [Google Scholar] [CrossRef]
- Yang, G.F.; Chen, P.; Yu, Z.G.; Liu, B.; Xie, Z.L.; Xiu, X.Q.; Han, P.; Zhao, H.; Hua, X.M.; Zhang, R.; et al. Fabrication of GaN Nanocolumns with Semipolar Plane Using Ni Nano-Island Masks. Semicond. Technol. 2011, 36, 417–420. [Google Scholar]
- Kim, H.S.; Yeom, G.Y.; Lee, J.W.; Kim, T.I. Characteristics of inductively coupled Cl2/BCl3 plasmas during GaN etching. J. Vac. Sci. Technol. A 1999, 17, 2214–2219. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.; Ramam, A.; Chua, S.J.; Pan, J.S.; Huan, A. Characterization of inductively coupled plasma etched surface of GaN using chemistry. J. Vac. Sci. Technol. A 2001, 19, 2522–2532. [Google Scholar] [CrossRef]
- Lee, Y.H.; Sung, Y.J.; Yeom, G.Y.; Lee, J.W.; Kim, T.I. Magnetized inductively coupled plasma etching of GaN in Cl2/BCl3 plasmas. J. Vac. Sci. Technol. A 2000, 18, 1390–1394. [Google Scholar] [CrossRef]
- McNevin, S.C. A thermochemical model for the plasma etching of aluminum in BCl3/Cl2 and BBr3/Br2. J. Vac. Sci. Technol. B 1990, 8, 1212–1222. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; You, L.P.; Duan, X.F.; Lian, W.C.; Qin, G.G. Synthesis of Ga2O3 chains with closely spaced knots connected by nanowires. J. Cryst. Growth 2004, 267, 538–542. [Google Scholar] [CrossRef]
- Brauner, N.; Shacham, M. Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants. Chem. Eng. Process. 1997, 36, 243–249. [Google Scholar] [CrossRef]
- Ham, M.H.; Lee, S.; Myoung, J.M.; Lee, W. Controlled Formation of Oxide Shells from GaN Nanowires: Poly- to Single-Crystal. Electron. Mater. Lett. 2011, 7, 243–247. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, R.; Xu, X.F.; Chen, Z.Z.; Zhou, Y.G.; Xie, S.Y.; Shi, Y.; Shen, B.; Gu, S.L.; Huang, Z.C.; et al. Oxidation of gallium nitride epilayers in dry oxygen. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 2000, 5, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.Y.; Wang, C.Y.; Chen, L.Y.; Ke, M.Y.; Huang, J. InGaN-GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks. IEEE J. Quantum Electron. 2008, 44, 468–472. [Google Scholar] [CrossRef]
- Lin, J.; Zong, R.; Zhou, M.; Zhu, Y. Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl. Catal. B Environ. 2009, 89, 425–431. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Chang, S.J.; Hsu, C.L.; Lin, Y.R.; Chen, I.C. ZnO Nanotube Ethanol Gas Sensors. J. Electrochem. Soc. 2008, 155, K152–K155. [Google Scholar] [CrossRef]
- Star, A.; Lu, Y.; Bradley, K.; Grüner, G. Nanotube Optoelectronic Memory Devices. Nano Lett. 2004, 4, 1587–1591. [Google Scholar] [CrossRef]
- Han, J.; Liu, Z.; Guo, K.; Wang, B.; Zhang, X.; Hong, T. High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl. Catal. B Environ. 2015, 163, 179–188. [Google Scholar] [CrossRef]
- Zhuang, Z.; Guo, X.; Liu, B.; Hu, F.R.; Li, Y.; Tao, T.; Dai, J.P.; Zhi, T.; Xie, Z.L.; Chen, P.; et al. High Color Rendering Index Hybrid III-Nitride/Nanocrystals White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 36–43. [Google Scholar] [CrossRef]
- Liu, B.; Chen, D.; Lu, H.; Tao, T.; Zhuang, Z.; Shao, Z.; Xu, W.; Ge, H.; Zhi, T.; Ren, F.; et al. Hybrid Light Emitters and UV Solar-Blind Avalanche Photodiodes based on III-Nitride Semiconductors. Adv. Mater. 2020, 32, 1904354. [Google Scholar] [CrossRef] [PubMed]
Sample | Cl2/BCl3 (sccm) | RF Power (W) | ICP Power (W) | Pressure (mTorr) | Etch Rate (nm/min) |
---|---|---|---|---|---|
GaN | 48/6 | 100 | 300 | 10 | 320 |
β-Ga2O3 | 20/80 | 150 | 700 | 20 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Zhang, L.; Li, Y.; Xiu, X.; Xie, Z.; Tao, T.; Liu, B.; Chen, P.; Zhang, R.; Zheng, Y. A Selective Etching Route for Large-Scale Fabrication of β-Ga2O3 Micro-/Nanotube Arrays. Nanomaterials 2021, 11, 3327. https://doi.org/10.3390/nano11123327
Ding S, Zhang L, Li Y, Xiu X, Xie Z, Tao T, Liu B, Chen P, Zhang R, Zheng Y. A Selective Etching Route for Large-Scale Fabrication of β-Ga2O3 Micro-/Nanotube Arrays. Nanomaterials. 2021; 11(12):3327. https://doi.org/10.3390/nano11123327
Chicago/Turabian StyleDing, Shan, Liying Zhang, Yuewen Li, Xiangqian Xiu, Zili Xie, Tao Tao, Bin Liu, Peng Chen, Rong Zhang, and Youdou Zheng. 2021. "A Selective Etching Route for Large-Scale Fabrication of β-Ga2O3 Micro-/Nanotube Arrays" Nanomaterials 11, no. 12: 3327. https://doi.org/10.3390/nano11123327
APA StyleDing, S., Zhang, L., Li, Y., Xiu, X., Xie, Z., Tao, T., Liu, B., Chen, P., Zhang, R., & Zheng, Y. (2021). A Selective Etching Route for Large-Scale Fabrication of β-Ga2O3 Micro-/Nanotube Arrays. Nanomaterials, 11(12), 3327. https://doi.org/10.3390/nano11123327