Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi2Se3 under UV- and Visible-Light Radiations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Pristine Bi2Se3 and Ag@Bi2Se3 Nanoplatelets
2.2. Characterization of Nanoplatelets
2.3. Photocurrent Measurements
3. Results
3.1. XPS Analysis
3.2. Morphological Analysis
3.3. Analysis of Crystal Structures and Surface Morphologies
3.4. Raman Analysis
3.5. Analysis of Optical Properties
3.6. Photocurrent under the UV and Visible Light
3.7. Mechanism of Photocurrent Enhancement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nechaev, I.A. Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 121111. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, J.; Fang, Z.; Lin, L.; Qian, Y.; Wang, Y.; Ye, C.; Ma, C.; Zeng, J. One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies. Nano Res. 2015, 8, 3612–3620. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J.Z. Topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konig, M.; Wiedmann, S.; Brune, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.L.; Zhang, S.C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irfan, B.; Sahoo, S.; Gaur, A.P.S.; Ahmadi, M.; Guinel, M.J.F.; Katiyar, R.S.; Chatterjee, R. Temperature dependent Raman scattering studies of three dimensional topological insulators Bi2Se3. J. Appl. Phys. 2014, 115, 173506. [Google Scholar] [CrossRef]
- Fei, F.; Zhang, S.; Zhang, M.; Shah, S.A.; Song, F.; Wang, X.; Wang, B. The material efforts for quantized Hall devices based on topological insulators. Adv. Mater. 2020, 32, 1904593. [Google Scholar] [CrossRef]
- Mishra, S.K.; Satpathy, S.; Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter. 1997, 9, 461–470. [Google Scholar] [CrossRef]
- Tian, W.; Yu, W.; Shi, J.; Wang, Y. The property, preparation and application of topological insulators: A review. Materials 2017, 10, 814. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, L.; Huang, W.; Li, L.; Jin, B.; Li, H.; Zhai, T. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater. 2018, 28, 1802707. [Google Scholar] [CrossRef]
- Tian, J.; Şahin, C.; Miotkowski, I.; Flatté, M.E.; Chen, Y.P. Opposite current-induced spin polarizations in bulk-metallic Bi2Se3 and bulk-insulating Bi2Te2Se topological insulator thin flakes. Phys. Rev. B 2021, 103, 035412. [Google Scholar] [CrossRef]
- Kong, P.P.; Zhang, J.L.; Zhang, S.J.; Zhu, J.; Liu, Q.Q.; Yu, R.C.; Fang, Z.; Jin, C.Q.; Yang, W.G.; Yu, X.H.; et al. Superconductivity of the topological insulator Bi2Se3 at high pressure. J. Phys. Condens. Matter 2013, 25, 362204. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S. Nematic superconductivity in doped Bi2Se3 topological superconductors. Condens. Matter 2019, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Cho, S.; Butch, N.P.; Syers, P.; Kirshenbaum, K.; Adam, S.; Paglione, J.; Fuhrer, M.S. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 2012, 8, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Beidenkopf, H.; Drozdov, I.; Fuccillo, M.K.; Seo, J.; Xiong, J.; Ong, N.P.; Yazdani, A.; Cava, R.J. Defects and high bulk resistivities in the Bi-rich tetradymite topological insulator Bi2+xTe2−xSe. Phys. Rev. B 2012, 86, 165119. [Google Scholar] [CrossRef]
- Schönherr, P.; Collins-McIntyre, L.J.; Zhang, S.; Kusch, P.; Reich, S.; Giles, T.; Daisenberger, D.; Prabhakaran, D.; Hesjedal, T. Vapour-liquid-solid growth of ternary Bi2Se2Te nanowires. Nanoscale Res. Lett. 2014, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Shieu, F.S.; Shih, H.C. Photosensing and characterizing of the pristine and In-, Sn-doped Bi2Se3 nanoplatelets fabricated by thermal V–S process. Nanomaterials 2021, 11, 1352. [Google Scholar] [CrossRef]
- Ahmed, R.; Xu, Y.; Sales, M.G.; Lin, Q.; McDonnell, S.; Zangari, G. Synthesis and material properties of Bi2Se3 nanostructures deposited by SILAR. J. Phys. Chem. C 2018, 122, 12052–12060. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wang, N.; Ning, X.; Li, H.; Lu, D.; Liu, X.; Zhang, Q.; Huang, Y. Bi2Se3 sensitized TiO2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light. Nanoscale Res. Lett. 2018, 13, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, P.B.; Tumelero, M.A.; Zangari, G.; Pasa, A.A. Tuning electrodeposition conditions towards the formation of smooth Bi2Se3 thin films. J. Electrochem. Soc. 2017, 164, D401–D405. [Google Scholar] [CrossRef]
- Liang, K.; Wang, C.; Xu, X.; Leng, J.; Ma, H. Capacitive and photocatalytic performance of Bi2Se3 nanostructures synthesized by solvothermal method. Phys. Lett. A 2017, 381, 652–657. [Google Scholar] [CrossRef]
- Li, X.M.; Zhao, K.; Ni, H.; Zhao, S.Q.; Xiang, W.F.; Lu, Z.Q.; Yue, Z.J.; Wang, F.; Kong, Y.C.; Wong, H.K. Voltage tunable photodetecting properties of La0.4Ca0.6MnO3 films grown on miscut LaSrAlO4 substrates. Appl. Phys. Lett. 2010, 97, 044104. [Google Scholar] [CrossRef]
- Huang, S.M.; Huang, S.J.; Yan, Y.J.; Yu, S.H.; Chou, M.; Yang, H.W.; Chang, Y.S.; Chen, R.S. Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake. Sci. Rep. 2017, 7, 45413. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Bhattacharyya, B.; Srivastava, A.K.; Senguttuvan, T.D.; Husale, S. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci. Rep. 2016, 6, 19138. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, B.; Sharma, A.; Kaur, M.; Singh, B.P.; Husale, S. Highly responsive broadband photodetection in topological insulator-Carbon nanotubes based heterostructure. J. Alloys Compd. 2021, 851, 156759. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Z.; Li, D.; Xu, Y.; Li, J.; Bai, C.; Man, B. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/ Bi2Se3. Appl. Surf. Sci. 2020, 509, 145290. [Google Scholar] [CrossRef]
- Pamu, R.; Lawrie, B.J.; Khomami, B.; Mukherjee, D. Broadband plasmonic photocurrent enhancement from photosystem I assembled with tailored arrays of Au and Ag nanodisks. ACS Appl. Nano Mater. 2021, 4, 1209–1219. [Google Scholar] [CrossRef]
- Peng, K.; Wu, S.; Xie, X.; Yang, J.; Qian, C.; Song, F.; Sun, S.; Dang, J.; Yu, Y.; Shi, S.; et al. Giant photocurrent enhancement by coulomb interaction in a single quantum dot for energy harvesting. Phys. Rev. Appl. 2019, 11, 024015. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Tao, Z.; Gu, M.; Richards, B.S. Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays. Sol. Energy 2017, 150, 156–160. [Google Scholar] [CrossRef]
- Chakraborty, R.; Greullet, F.; George, C.; Baranov, D.; Fabrizio, E.D.; Krahne, R. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires. Nanoscale 2013, 5, 5334. [Google Scholar] [CrossRef]
- Meyer, N.; Geishendorf, K.; Walowski, J.; Thomas, A.; Munzenberg, M. The impact of metallic contacts on spin-polarized photocurrents in topological insulator Bi2Se3 nanowires. Appl. Phys. Lett. 2020, 117, 262401. [Google Scholar] [CrossRef]
- Hong, X.; Shen, J.; Tang, X.; Xie, Y.; Su, M.; Tai, G.; Yao, J.; Fu, Y.; Ji, J.; Liu, X.; et al. High-performance broadband photodetector with in-situ-grown Bi2Se3 film on micropyramidal Si substrate. Opt. Mater. 2021, 117, 111118. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, Q.; Zhang, M.; Liu, L. Photoelectric properties of Bi2Se3 films grown by thermal evaporation method. Mater. Res. Express 2020, 7, 016429. [Google Scholar] [CrossRef]
- Wang, X.; Dai, G.; Liu, B.; Zou, H.; Chen, Y.; Mo, X.; Li, X.; Sun, J.; Liu, Y.; Liu, Y.; et al. Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 114, 113620. [Google Scholar] [CrossRef]
- Gupta, A.; Chowdhury, R.K.; Ray, S.K.; Srivastava, S.K. Selective photoresponse of plasmonic silver nanoparticle decorated Bi2Se3 nanosheets. Nanotechnology 2019, 30, 435204. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.; Hong, S.B.; Kim, D.; Kim, D.K.; Kim, J.; Jeong, K.; Park, S.H.; Cho, M.H. Enhancement of photoresponse in Bi2Se3/graphene heterostructures by effective electron—Hole separation through internal band bending. Appl. Surf. Sci. 2021, 554, 149623. [Google Scholar] [CrossRef]
- Liao, G.; Zhou, Y.; Huang, Z.; Ma, Q.; Luo, S.; Liu, Y.; Qi, X. Bi2Se3 nanosheets hybridized with reduced graphene oxide for enhanced photoelectrochemical activity. Appl. Phys. A 2021, 127, 705. [Google Scholar] [CrossRef]
- Meng, A.; Yuan, X.; Shen, T.; Li, Z.; Jiang, Q.; Xue, H.; Lin, Y.; Zhao, J. One-step synthesis of flower-like Bi2O3/Bi2Se3 nanoarchitectures and NiCoSe2/Ni0.85Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries. J. Mater. Chem. A 2019, 7, 17613. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, H.; Teng, J.; Guo, J.; Guo, Q.; Dai, X.; Fang, Z.; Wu, K. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 2009, 95, 053114. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Hand Book of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1979; p. 92. [Google Scholar]
- Hobbs, R.G.; Schmidt, M.; Bolger, C.T.; Georgiev, Y.M.; Fleming, P.; Morris, M.A.; Petkov, N.; Holmes, J.D.; Xiu, F.; Wang, K.L.; et al. Resist–substrate interface tailoring for generating high-density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. Vac. Sci. Technol. B 2012, 30, 041602. [Google Scholar] [CrossRef] [Green Version]
- Lamb, R.N.; Ngamsom, B.; Trimm, D.L.; Gong, B.; Silveston, P.L.; Praserthdam, P. Surface characterisation of Pd–Ag/Al2O3 catalysts for acetylene hydrogenation using an improved XPS procedure. Appl. Catal. A-Gen. 2004, 268, 43–50. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, Z.; Son, A.; Zhao, Y.; Xiong, Y.; Peng, B.; Wang, J.; Dresselhaus, M.S.; Xiong, Q. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Mote, V.D.; Purushotham, Y.; Dole, B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, L.G.; Wang, D.; An, X.Y.; Yang, H. Enhancement of surface state contribution in cadmium doped Bi2Se3 single crystal. J. Alloys Compd. 2019, 806, 180–186. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, M.; Yu, W.; Lu, Y.; Chen, C.; Xu, M.; Li, S.; Loh, K.P.; Bao, Q. Raman spectroscopy of two-dimensional Bi2TexSe3–x platelets produced by solvothermal method. Materials 2015, 8, 5007–5017. [Google Scholar] [CrossRef] [PubMed]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 2017, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.; Shaari, A.; Ahmed, R.; Jarkoni, N. First-principles many-body comparative study of Bi2Se3 crystal: A promising candidate for broadband photodetector. Phys. Lett. A 2017, 381, 2993–2999. [Google Scholar] [CrossRef]
- Ba, X.J.; Schlesinger, T.E.; James, R.B. Chapter 4-Electrical properties of mercuric iodide. In Semiconductors and Semimetals: A Treatise; Willardson, R.K., Beer, A.C., Weber, E.R., Eds.; Academic Press: Millbrae, CA, USA, 1995; Volume 43, pp. 111–168. [Google Scholar]
Sample | Bi (at.%) | Se (at.%) | Ag (at.%) |
---|---|---|---|
Bi2Se3 | 47.1 | 52.9 | 0 |
Ag10s@Bi2Se3 | 52.3 | 42.3 | 5.3 |
Ag15s@Bi2Se3 | 53.5 | 41.1 | 5.4 |
Ag20s@Bi2Se3 | 53.5 | 39.4 | 7.1 |
Ag25s@Bi2Se3 | 52.6 | 39.2 | 8.2 |
Ag Contents (at.%) | a (= b) (nm) | c (nm) | c/a |
---|---|---|---|
0 | 0.4133 | 2.8675 | 6.9381 |
5.3 | 0.4129 | 2.8736 | 6.9595 |
5.4 | 0.4128 | 2.8721 | 6.9576 |
7.1 | 0.4129 | 2.8736 | 6.9595 |
8.2 | 0.4131 | 2.8705 | 6.9486 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Lin, P.-T.; Shieu, F.-S.; Shih, H.-C. Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi2Se3 under UV- and Visible-Light Radiations. Nanomaterials 2021, 11, 3353. https://doi.org/10.3390/nano11123353
Wang C-C, Lin P-T, Shieu F-S, Shih H-C. Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi2Se3 under UV- and Visible-Light Radiations. Nanomaterials. 2021; 11(12):3353. https://doi.org/10.3390/nano11123353
Chicago/Turabian StyleWang, Chih-Chiang, Pao-Tai Lin, Fuh-Sheng Shieu, and Han-Chang Shih. 2021. "Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi2Se3 under UV- and Visible-Light Radiations" Nanomaterials 11, no. 12: 3353. https://doi.org/10.3390/nano11123353
APA StyleWang, C. -C., Lin, P. -T., Shieu, F. -S., & Shih, H. -C. (2021). Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi2Se3 under UV- and Visible-Light Radiations. Nanomaterials, 11(12), 3353. https://doi.org/10.3390/nano11123353