Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pethrick, R.A. Positron annihilation—A probe for nanoscale voids and free volume? Prog. Polym. Sci. 1997, 22, 1–47. [Google Scholar] [CrossRef]
- Pereira, V.S.M.; Schut, H.; Sietsma, J. A study of the microstructural stability and defect evolution in an ODS Eurofer steel by means of Electron Microscopy and Positron Annihilation Spectroscopy. J. Nucl. Mater. 2020, 540, 152398. [Google Scholar] [CrossRef]
- Gholami, Y.H.; Yuan, H.; Wilks, M.Q.; Josephson, L.; el Fakhri, G.; Normandin, M.D.; Kuncic, Z. Positron annihilation localization by nanoscale magnetization. Sci. Rep. 2020, 10, 20262. [Google Scholar] [CrossRef] [PubMed]
- Zgardzińska, B.; Chołubek, G.; Jarosz, B.; Wysogląd, K.; Gorgol, M.; Goździuk, M.; Chołubek, M.; Jasińska, B. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Sci. Rep. 2020, 10, 11890. [Google Scholar] [CrossRef]
- Rementeria, R.; Domínguez-Reyes, R.; Capdevila, C.; Garcia-Mateo, C.; Caballero, F.G. Positron Annihilation Spectroscopy Study of Carbon-Vacancy Interaction in Low-Temperature Bainite. Sci. Rep. 2020, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Xie, X.; Chen, Z.; Ye, F.; Li, T.; Yang, Y. Microstructure evolution and magnetic properties of Eu doped CuFeO2 multiferroic ceramics studied by positron annihilation. Ceram. Int. 2018, 44, 13894–13900. [Google Scholar] [CrossRef]
- Bardyshev, I.I.; Gol’danskii, A.V.; Kotenev, V.A.; Tsivadze, A.Y. Positron Annihilation Spectroscopy for the Sintering of Boron Nitride Ceramics. Prot. Met. Phys. Chem. Surf. 2018, 54, 648–651. [Google Scholar] [CrossRef]
- Dai, H.Y.; Liu, H.Z.; Peng, K.; Ye, F.J.; Li, T.; Chen, J.; Chen, Z.P. Correlation between Vacancy Defects and Magnetic Properties of the GdMn1-xZnxO3 Multiferroic Ceramics Studied by Positron Annihilation. Mater. Res. Bull. 2019, 119, 110565. [Google Scholar] [CrossRef]
- Mohsen, M.; Gomaa, E.; Al-Kotb, M.S.; Abdel-Baki, M.; Fathy, N. Positron annihilation Lifetime and Fourier transform infrared spectroscopic studies on Bi2O3–B2O3 glasses. J. Non-Cryst. Solids 2016, 436, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.D.; Qu, B.Y.; Zhou, R.L.; Zhang, B.; Sato, K. Anomalous packing state in Ce-Ga-Cu bulk metallic glasses. Intermetallics 2017, 84, 25–29. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Lin, C.; Zhang, T.; Zhang, R.; Huang, Z.; Shen, X.; Gu, B.; Ye, B.; Ying, F.; et al. Free-Volume Defects Investigation of GeS2-Ga2S3-CsI Chalcogenide Glasses by Positron Annihilation Spectroscopy. Infrared Phys. Technol. 2017, 83, 238–242. [Google Scholar] [CrossRef]
- Jean, Y.C.; Van Horn, J.D.; Hung, W.-S.; Lee, K.-R. Perspective of Positron Annihilation Spectroscopy in Polymers. Macromolecules 2013, 46, 7133–7145. [Google Scholar] [CrossRef]
- Sharma, S.K.; Pujari, P.K. Role of free volume characteristics of polymer matrix in bulk physical properties of polymer nanocomposites: A review of positron annihilation lifetime studies. Prog. Polym. Sci. 2017, 75, 31–47. [Google Scholar] [CrossRef]
- James, J.; Thomas, G.V.; Madathil, A.P.; Nambissan, P.M.G.; Kalarikkal, N.; Thomas, S. Positron annihilation spectroscopic characterization of free-volume defects and their correlations with the mechanical and transport properties of SBR–PMMA interpenetrating polymer networks. Phys. Chem. Chem. Phys. 2020, 22, 18169–18182. [Google Scholar] [CrossRef]
- Biswas, D.; Rajan, A.; Kabi, S.; Das, A.S.; Singh, L.S.; Nambissan, P.M.G. Structural defects characterization of silver-phosphate glass nanocomposites by positron annihilation and related experimental studies. Mater. Charact. 2019, 158, 109928. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Collins, J.; Bolesta, I.; Stelmashchuk, A.; Kolkevych, A.; Velupillai, S.; Klym, H.; Fedyshyn, O.; Tymoshuk, S.; Kolych, I. Random nanostructured metallic films for environmental monitoring and optical sensing: Experimental and computational studies. Nanoscale Res. Lett. 2015, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Chung, J.W.; Kang, T.J.; Kwak, S.-Y.; Suzuki, T. Determination of the glass transition temperature of polymer/layered silicate nanocomposites from positron annihilation lifetime measurements. Polymer 2007, 48, 4271–4277. [Google Scholar] [CrossRef]
- Leipner, H.S.; Hübner, C.G.; Staab, T.E.M.; Haugk, M.; Krause-Rehberg, R. Positron Annihilation at Dislocations and Related Point Defects in Semiconductors. Phys. Status Solidi 1999, 171, 377–382. [Google Scholar] [CrossRef]
- Langhammer, H.T.; Müller, T.; Polity, A.; Felgner, K.-H.; Abicht, H.-P. On the crystal and defect structure of manganese-doped barium titanate ceramics. Mater. Lett. 1996, 26, 205–210. [Google Scholar] [CrossRef]
- Massoud, A.M.; Krause-Rehberg, R.; Langhammer, H.T.; Gebauer, J.; Mohsen, M. Defect Studies in BaTiO3 Ceramics Using Positron Annihilation Spectroscopy. Mater. Sci. Forum 2001, 363–365, 144–146. [Google Scholar] [CrossRef]
- Castro, M.S.; Salgueiro, W.; Somoza, A. Electron paramagnetic resonance and positron annihilation study of the compensation mechanisms in donor-doped ceramics. J. Phys. Chem. Solids 2007, 68, 1315–1323. [Google Scholar] [CrossRef]
- Zhi, Y.; Chen, A. A positron annihilation study of SrTiO3-based ceramics. J. Physics Condens. Matter 1993, 5, 1877–1882. [Google Scholar] [CrossRef]
- Selim, F.A.; Winarski, D.; Varney, C.R.; Tarun, M.C.; Ji, J.; McCluskey, M.D. Generation and characterization of point defects in SrTiO3 and Y3Al5O. Results Phys. 2015, 5, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Sarkar, A.; Sanyal, D.; Chatterjee, P.; Banerjee, D.; Chaudhuri, B.K. Positron annihilation lifetime studies on La0.5Pb0.5Mn1−yCryO. Solid State Commun. 2003, 125, 65–70. [Google Scholar] [CrossRef]
- Hassan, H.E.; Sharshar, T.; Hessien, M.M.; Hemeda, O.M. Effect of γ-rays irradiation on Mn–Ni ferrites: Structure, magnetic properties and positron annihilation studies. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2013, 304, 72–79. [Google Scholar] [CrossRef]
- Maheshwari, P.; Keskar, N.; Sudarshan, K.; Manikrishna, K.V.; Krishnan, M.; Pujari, P.K. Investigating defect evolution during thermal treatment in Ni–Cr alloy using positron annihilation spectroscopy. J. Mater. Sci. 2020, 56, 3498–3509. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, X.; Chen, Z.; Xiong, H.; Gao, J.; Du, J.; Tang, X.; Zhang, Q.; Qian, L.; Chen, Z. Dependence of the Ferromagnetism on Vacancy Defect in Annealed In 2 O 3 Nanocrystals: A Positron Annihilation Study. Phys. Status Solidi 2021, 218. [Google Scholar] [CrossRef]
- Ogorodnikova, O.V.; Majerle, M.; Čížek, J.; Simakov, S.; Gann, V.V.; Hruška, P.; Kameník, J.; Pospíšil, J.; Štefánik, M.; Vinš, M. Positron annihilation spectroscopy study of radiation-induced defects in W and Fe irradiated with neutrons with different spectra. Sci. Rep. 2020, 10, 18898. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Peng, X.; Huang, Z.; Qian, L.; He, C.; Fang, P. Water diffusivity transition in fumed silica-filled polydimethylsiloxane composite: Correlation with the interfacial free volumes characterized by positron annihilation lifetime spectroscopy. J. Mater. Sci. 2021, 56, 3095–3110. [Google Scholar] [CrossRef]
- El-Shaer, A.; Abdelfatah, M.; Mahmoud, K.R.; Momay, S.; Eraky, M.R. Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity. J. Alloys Compd. 2019, 817, 152799. [Google Scholar] [CrossRef]
- Ghosh, S.; Nambissan, P.M.G.; Bhattacharya, R. Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4. Phys. Lett. A 2004, 325, 301–308. [Google Scholar] [CrossRef]
- He, J.; Lin, L.-B.; Lu, T.-C.; Wang, P. Effects of electron- and/or gamma-irradiation upon the optical behavior of transparent MgAl2O4 ceramics: Different color centers induced by electron-beam and γ-ray. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2002, 191, 596–599. [Google Scholar] [CrossRef]
- Nambissan, P.M.G.; Upadhyay, C.; Verma, H.C. Positron Lifetime Spectroscopic Studies of Nanocrystalline ZnFe2O4. J. Appl. Phys. 2003, 93, 6320. [Google Scholar] [CrossRef]
- Shantarovich, V.P. Positron annihilation and free volume studies in polymer glasses. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2485–2503. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Calvez, L.; Petracovschi, E.; Klym, H.; Ingram, A.; Demchenko, P. Thermally-Induced Crystallization Behaviour of 80GeSe2–20Ga2Se3 Glass as Probed by Combined X-Ray Diffraction and PAL Spectroscopy. J. Alloys Compd. 2014, 582, 323–327. [Google Scholar] [CrossRef]
- Klym, H.; Ingram, A.; Shpotyuk, O.; Karbovnyk, I. Influence of CsCl Addition on the Nanostructured Voids and Optical Properties of 80GeS2-20Ga2S3 Glasses. Opt. Mater. 2016, 59, 39–42. [Google Scholar] [CrossRef]
- Klym, H.; Ingram, A.; Shpotyuk, O. Free-Volume Nanostructural Transformation in Crystallized GeS2-Ga2S3-CsCl Glasses. Mater. und Werkst. 2016, 47, 198–202. [Google Scholar] [CrossRef]
- Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses. Radiat. Meas. 2016, 90, 117–121. [Google Scholar] [CrossRef]
- Klym, H.; Ingram, A.; Shpotyuk, O.; Szatanik, R. Free-Volume Study in GeS2-Ga2S3-CsCl Chalcohalide Glasses Using Positron Annihilation Technique. Phys. Procedia 2015, 76, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Klym, H.; Ingram, A.; Shpotyuk, O.; Hadzaman, I.; Solntsev, V. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: The PAL Spectroscopy Study. Nanoscale Res. Lett. 2016, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Filipecki, J.; Ingram, A.; Klym, H.; Shpotyuk, O.; Vakiv, M. Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics. J. Phys. Conf. Ser. 2007, 79, 012015. [Google Scholar] [CrossRef]
- Klym, H.; Hadzaman, I.; Shpotyuk, O. Influence of Sintering Temperature on Pore Structure and Electrical Properties of Technologically Modified MgO-Al2O3 Ceramics. Mater. Sci. 2015, 21, 92–95. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Bolesta, I.; Rovetskii, I.; Velgosh, S.; Klym, H. Studies of CdI2-Bi3 microstructures with optical methods, atomic force microscopy and positron annihilation spectroscopy. Mater. Sci. 2014, 32, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Klym, H.; Ingram, A. Unified model of multichannel positron annihilation in nanoporous magnesium aluminate ceramics. J. Phys. Conf. Ser. 2007, 79, 012014. [Google Scholar] [CrossRef] [Green Version]
- Krause-Rehberg, R.; Leipner, H.S. Positron Annihilation in Semiconductors: Defect Studies; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Kansy, J.; Giebel, D. Study of defect structure with new software for numerical analysis of PAL spectra. J. Phys. Conf. Ser. 2011, 265, 012030. [Google Scholar] [CrossRef] [Green Version]
- Klym, H.; Lukashevych, D. Multichannel Positron-Positronium Trapping Models for Nanovoids Characterization of Functional Materials. In Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 22–24 April 2020; pp. 272–275. [Google Scholar]
- Dupasquier, A.; De Natale, P.; Rolando, A. Formal calculation of the pick-off annihilation rate for ortho- and parapositronium. Phys. Rev. B 1991, 43, 10036–10041. [Google Scholar] [CrossRef]
- Goworek, T. Comments on the relation: Positronium lifetime–free volume size parameters of the Tao–Eldrup model. Chem. Phys. Lett. 2002, 366, 184–187. [Google Scholar] [CrossRef]
- Zaleski, R.; Wawryszczuk, J.; Goworek, T. Pick-off models in the studies of mesoporous silica MCM-Comparison of various methods of the PAL spectra analysis. Radiat. Phys. Chem. 2007, 76, 243–247. [Google Scholar] [CrossRef]
- Zgardzińska, B. The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chem. Phys. Lett. 2015, 622, 20–22. [Google Scholar] [CrossRef]
- Gorgol, M.; Maciejewska, M.; Jasińska, B.; Zaleski, R. Testing of the Extended Tao-Eldrup Model on Porous VP-DVB Copolymers. Mater. Sci. Forum 2012, 733, 24–28. [Google Scholar] [CrossRef]
- Seeman, V.; Feldbach, E.; Kärner, T.; Maaroos, A.; Mironova-Ulmane, N.; Popov, A.I.; Shablonin, E.; Vasil’chenko, E.; Lushchik, A. Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry. Opt. Mater. 2019, 91, 42–49. [Google Scholar] [CrossRef]
- Lushchik, A.; Feldbach, E.; Kotomin, E.A.; Kudryavtseva, I.; Kuzovkov, V.N.; Popov, A.I.; Seeman, V.; Shablonin, E. Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Sci. Rep. 2020, 10, 7810. [Google Scholar] [CrossRef]
- Lushchik, A.; Dolgov, S.; Feldbach, E.; Pareja, R.; Popov, A.I.; Shablonin, E.; Seeman, V. Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 435, 31–37. [Google Scholar] [CrossRef]
- Feldbach, E.; Museur, L.; Krasnenko, V.; Zerr, A.; Kitaura, M.; Kanaev, A. Defects induced by He+ irradiation in γ-Si3N4. J. Lumin. 2021, 237, 118132. [Google Scholar] [CrossRef]
- Feldbach, E.; Zerr, A.; Museur, L.; Kitaura, M.; Manthilake, G.; Tessier, F.; Krasnenko, V.; Kanaev, A. Electronic Band Transitions in γ-Ge3N4. Electron. Mater. Lett. 2021, 17, 315–323. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Kenzhina, I.; Alyamova, Z.; Zdorovets, M.V. Optical and structural properties of AlN ceramics irradiated with heavy ions. Opt. Mater. 2019, 91, 130–137. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Dukenbayev, K.; Kozlovskiy, A.L. Study of Helium Swelling in Nitride Ceramics at Different Irradiation Temperatures. Materials 2019, 12, 2415. [Google Scholar] [CrossRef] [Green Version]
- Kozlovskiy, A.; Kenzhina, I.; Dukenbayev, K.; Zdorovets, M. Influence of He-ion irradiation of ceramic AlN. Vacuum 2019, 163, 45–51. [Google Scholar] [CrossRef]
- Kurteeva, A.A.; Bogdanovich, N.M.; Bronin, D.I.; Porotnikova, N.M.; Vdovin, G.K.; Pankratov, A.A.; Beresnev, S.M.; Kuz’mina, L.A. Options for adjustment of microstructure and conductivity of cathodic substrates of La(Sr)MnO. Russ. J. Electrochem. 2010, 46, 811–819. [Google Scholar] [CrossRef]
- Porotnikova, N.M.; Eremin, V.A.; Farlenkov, A.S.; Kurumchin, E.K.; Sherstobitova, E.A.; Kochubey, D.I.; Ananyev, M.V. Effect of AO Segregation on Catalytical Activity of La0.7A0.3MnO3±δ (A = Ca, Sr, Ba) Regarding Oxygen Reduction Reaction. Catal. Lett. 2018, 148, 2839–2847. [Google Scholar] [CrossRef]
- Osinkin, D.A.; Khodimchuk, A.V.; Porotnikova, N.M.; Bogdanovich, N.M.; Fetisov, A.V.; Ananyev, M.V. Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ. Energies 2020, 13, 250. [Google Scholar] [CrossRef] [Green Version]
- Suchikova, Y.O. Sulfide Passivation of Indium Phosphide Porous Surfaces. J. Nano-Electron. Phys. 2017, 9, 1006. [Google Scholar] [CrossRef]
- Suchikova, J.A. Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide. J. Nano-Electron. Phys. 2015, 7, 03017. [Google Scholar]
- Kozlovskiy, A.; Shlimas, D.; Kenzhina, I.; Zdorovets, M. Study of the use of ionizing radiation to improve the efficiency of performance of nickel nanostructures as anodes of lithium-ion batteries. Mater. Res. Express 2019, 6, 055026. [Google Scholar] [CrossRef]
- Rumiantseva, Y.; Melnichuk, I.; Garashchenko, V.; Zaporozhets, O.; Turkevich, V.; Bushlya, V. Influence of cBN content, Al2O3 and Si3N4 additives and their morphology on microstructure, properties, and wear of PCBN with NbN binder. Ceram. Int. 2020, 46, 22230–22238. [Google Scholar] [CrossRef]
- Olenych, I.B.; Aksimentyeva, O.I.; Monastyrskii, L.S.; Horbenko, Y.Y.; Partyka, M.V. Electrical and Photoelectrical Properties of Reduced Graphene Oxide—Porous Silicon Nanostructures. Nanoscale Res. Lett. 2017, 12, 272. [Google Scholar] [CrossRef]
Ts, °C | τav, ns | τb, ns | κd, ns−1 | τ2 − τb, ns | τ2/τb | R3, nm |
---|---|---|---|---|---|---|
1100 | 0.32 | 0.28 | 0.65 | 0.21 | 1.72 | 0.338 |
1200 | 0.30 | 0.27 | 0.63 | 0.20 | 1.74 | 0.322 |
1300 | 0.27 | 0.25 | 0.62 | 0.19 | 1.74 | 0.305 |
1400 | 0.24 | 0.21 | 0.56 | 0.15 | 1.69 | 0.278 |
Ts, °C/h | τ1, ns | I1, a.u. | τ2, ns | I2, a.u. | τ3, ns | I3, a.u. | τav, ns | τb, ns | κd, ns−1 | τ2 − τb, ns | τ2/τb | R3, nm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1300/2 | 0.17 | 0.67 | 0.40 | 0.32 | 2.24 | 0.01 | 0.24 | 0.21 | 1.0 | 0.19 | 1.9 | 0.309 |
1300/5 | 0.16 | 0.71 | 0.38 | 0.28 | 2.17 | 0.01 | 0.22 | 0.19 | 1.0 | 0.19 | 2.0 | 0.303 |
1300/9 | 0.15 | 0.74 | 0.37 | 0.25 | 2.38 | 0.01 | 0.21 | 0.18 | 1.0 | 0.19 | 2.1 | 0.321 |
1400/2 | 0.16 | 0.78 | 0.38 | 0.21 | 2.18 | 0.01 | 0.20 | 0.18 | 0.9 | 0.20 | 2.1 | 0.304 |
1400/5 | 0.15 | 0.77 | 0.37 | 0.22 | 2.17 | 0.01 | 0.20 | 0.17 | 0.9 | 0.20 | 2.2 | 0.303 |
1400/9 | 0.15 | 0.77 | 0.37 | 0.22 | 1.83 | 0.01 | 0.20 | 0.17 | 0.9 | 0.20 | 2.2 | 0.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klym, H.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials 2021, 11, 3373. https://doi.org/10.3390/nano11123373
Klym H, Karbovnyk I, Piskunov S, Popov AI. Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials. 2021; 11(12):3373. https://doi.org/10.3390/nano11123373
Chicago/Turabian StyleKlym, Halyna, Ivan Karbovnyk, Sergei Piskunov, and Anatoli I. Popov. 2021. "Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics" Nanomaterials 11, no. 12: 3373. https://doi.org/10.3390/nano11123373
APA StyleKlym, H., Karbovnyk, I., Piskunov, S., & Popov, A. I. (2021). Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials, 11(12), 3373. https://doi.org/10.3390/nano11123373