Ink Formulation and Printing Parameters for Inkjet Printing of Two Dimensional Materials: A Mini Review
Abstract
:1. Introduction
2. Ink Formulation of 2D Materials
2.1. Exfoliation of Bulk 2D Materials into 2D Nanosheets
2.2. Directing Ink Formulation
2.3. Solvent Exchange Ink Formulation
3. Inkjet Printing of 2D Ink
3.1. Mechanism of Ink Jet Printing
3.2. Ohnesorge Number
3.3. Coffee Ring Effect
3.4. Droplet Spacing
3.5. Percolation Network
4. Application
5. Summary and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B.; et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Jiang, C.; Wei, S.-h. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A.C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589. [Google Scholar] [CrossRef]
- Cataldi, P.; Bayer, I.S.; Bonaccorso, F.; Pellegrini, V.; Athanassiou, A.; Cingolani, R. Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplatelet-Bio-Based Composites. Adv. Electron. Mater. 2015, 1, 1500224. [Google Scholar] [CrossRef]
- McManus, D.; Vranic, S.; Withers, F.; Sanchez-Romaguera, V.; Macucci, M.; Yang, H.; Sorrentino, R.; Parvez, K.; Son, S.-K.; Iannaccone, G.; et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Conti, S.; Pimpolari, L.; Calabrese, G.; Worsley, R.; Majee, S.; Polyushkin, D.K.; Paur, M.; Pace, S.; Keum, D.H.; Fabbri, F.; et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 2020, 11, 3566. [Google Scholar] [CrossRef]
- Zhang, C.; McKeon, L.; Kremer, M.P.; Park, S.-H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C.Ó.; McEvoy, N.; Nerl, H.C.; et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795. [Google Scholar] [CrossRef]
- Arapov, K.; Rubingh, E.; Abbel, R.; Laven, J.; de With, G.; Friedrich, H. Conductive Screen Printing Inks by Gelation of Graphene Dispersions. Adv. Funct. Mater. 2016, 26, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Schwab, M.G.; Strudwick, A.J.; Hennig, I.; Feng, X.; Wu, Z.; Müllen, K. Screen-Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks. Adv. Energy Mater. 2013, 3, 1035–1040. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing—Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef]
- Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.y.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Bartolotta, A.; Coleman, J.N.; Backes, C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Kang, J.; Ng, L.W.T.; Zhu, X.; Howe, R.C.T.; Jones, C.G.; Hersam, M.C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, D.J.; Lotya, M.; Cunningham, G.; Smith, R.J.; McCloskey, D.; Donegan, J.F.; Coleman, J.N. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2014, 2, 925–932. [Google Scholar] [CrossRef]
- Li, B.; Liang, X.; Li, G.; Shao, F.; Xia, T.; Xu, S.; Hu, N.; Su, Y.; Yang, Z.; Zhang, Y. Inkjet-Printed Ultrathin MoS2-Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 39444–39454. [Google Scholar] [CrossRef]
- Casiraghi, C.; Macucci, M.; Parvez, K.; Worsley, R.; Shin, Y.; Bronte, F.; Borri, C.; Paggi, M.; Fiori, G. Inkjet printed 2D-crystal based strain gauges on paper. Carbon 2018, 129, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Albrow-Owen, T.; Jin, X.; Ali, A.; Hu, Y.; Howe, R.C.T.; Shehzad, K.; Yang, Z.; Zhu, X.; Woodward, R.I.; et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278. [Google Scholar] [CrossRef]
- Jiang, X.; Li, W.; Hai, T.; Yue, R.; Chen, Z.; Lao, C.; Ge, Y.; Xie, G.; Wen, Q.; Zhang, H. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. npj 2d Mater. Appl. 2019, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Jun, H.Y.; Ryu, S.O.; Kim, S.H.; Kim, J.Y.; Chang, C.-H.; Ryu, S.O.; Choi, C.-H. Inkjet Printing of Few-Layer Enriched Black Phosphorus Nanosheets for Electronic Devices. Adv. Electron. Mater. 2021, 7, 2100577. [Google Scholar] [CrossRef]
- Hu, G.; Yang, L.; Yang, Z.; Wang, Y.; Jin, X.; Dai, J.; Wu, Q.; Liu, S.; Zhu, X.; Wang, X.; et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv. 2020, 6, eaba5029. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lemme, M.C.; Östling, M. Inkjet Printing of 2D Layered Materials. ChemPhysChem 2014, 15, 3427–3434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W. Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials 2018, 8, 942. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Luo, Y.; Liu, B.; Cheng, H.-M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 2018, 47, 6224–6266. [Google Scholar] [CrossRef]
- Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L.F.; Vaia, R.A. Mechanism for Liquid Phase Exfoliation of MoS2. Chem. Mater. 2016, 28, 337–348. [Google Scholar] [CrossRef]
- Kang, J.; Wood, J.D.; Wells, S.A.; Lee, J.-H.; Liu, X.; Chen, K.-S.; Hersam, M.C. Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano 2015, 9, 3596–3604. [Google Scholar] [CrossRef] [Green Version]
- Dodoo-Arhin, D.; Howe, R.C.T.; Hu, G.; Zhang, Y.; Hiralal, P.; Bello, A.; Amaratunga, G.; Hasan, T. Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 2016, 105, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, G.; Lotya, M.; Cucinotta, C.S.; Sanvito, S.; Bergin, S.D.; Menzel, R.; Shaffer, M.S.P.; Coleman, J.N. Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano 2012, 6, 3468–3480. [Google Scholar] [CrossRef]
- Coleman, J.N. Liquid Exfoliation of Defect-Free Graphene. Acc. Chem. Res. 2013, 46, 14–22. [Google Scholar] [CrossRef]
- Yao, Y.; Tolentino, L.; Yang, Z.; Song, X.; Zhang, W.; Chen, Y.; Wong, C.-P. High-Concentration Aqueous Dispersions of MoS2. Adv. Funct. Mater. 2013, 23, 3577–3583. [Google Scholar] [CrossRef]
- Howe, R.C.T.; Woodward, R.I.; Hu, G.; Yang, Z.; Kelleher, E.J.R.; Hasan, T. Surfactant-aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edge-state saturable absorption. Phys. Status Solidi B 2016, 253, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Carey, T.; Cacovich, S.; Divitini, G.; Ren, J.; Mansouri, A.; Kim, J.M.; Wang, C.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202. [Google Scholar] [CrossRef] [Green Version]
- Guardia, L.; Fernández-Merino, M.J.; Paredes, J.I.; Solís-Fernández, P.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 2011, 49, 1653–1662. [Google Scholar] [CrossRef]
- Li, J.; Naiini, M.M.; Vaziri, S.; Lemme, M.C.; Östling, M. Inkjet Printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524–6531. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ye, F.; Vaziri, S.; Muhammed, M.; Lemme, M.C.; Östling, M. Efficient Inkjet Printing of Graphene. Adv. Mater. 2013, 25, 3985–3992. [Google Scholar] [CrossRef]
- Sui, Y.; Hess-Dunning, A.; Wei, P.; Pentzer, E.; Sankaran, R.M.; Zorman, C.A. Electrically Conductive, Reduced Graphene Oxide Structures Fabricated by Inkjet Printing and Low Temperature Plasma Reduction. Adv. Mater. Technol. 2019, 4, 1900834. [Google Scholar] [CrossRef]
- Liang, Y.T.; Hersam, M.C. Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange. J. Am. Chem. Soc. 2010, 132, 17661–17663. [Google Scholar] [CrossRef] [PubMed]
- Secor, E.B.; Prabhumirashi, P.L.; Puntambekar, K.; Geier, M.L.; Hersam, M.C. Inkjet Printing of High Conductivity, Flexible Graphene Patterns. J. Phys. Chem. Lett. 2013, 4, 1347–1351. [Google Scholar] [CrossRef]
- Michel, M.; Desai, J.A.; Biswas, C.; Kaul, A.B. Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing. Nanotechnology 2016, 27, 485602. [Google Scholar] [CrossRef]
- He, P.; Derby, B. Controlling Coffee Ring Formation during Drying of Inkjet Printed 2D Inks. Adv. Mater. Interfaces 2017, 4, 1700944. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sollami Delekta, S.; Zhang, P.; Yang, S.; Lohe, M.R.; Zhuang, X.; Feng, X.; Östling, M. Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano 2017, 11, 8249–8256. [Google Scholar] [CrossRef] [PubMed]
- Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S.; Hu, G.; Albrow-Owen, T.; Ng, L.W.T.; Howe, R.C.T.; Hasan, T.; Sun, Z.; et al. Inkjet Printed Large-Area Flexible Few-Layer Graphene Thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480. [Google Scholar] [CrossRef] [Green Version]
- Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T.S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P.J.; et al. Inkjet-Printed Graphene Electronics. ACS Nano 2012, 6, 2992–3006. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shi, W.; Wang, W.; Leng, Y.; Zhao, Y. Inkjet Printing Patterns of Highly Conductive Pristine Graphene on Flexible Substrates. Ind. Eng. Chem. Res. 2014, 53, 16777–16784. [Google Scholar] [CrossRef]
- Kelly, A.G.; Finn, D.; Harvey, A.; Hallam, T.; Coleman, J.N. All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 2016, 109, 023107. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, L.; Chen, J.-J.; Wang, Y.; Xu, Z.-q.; Sowade, E.; Baumann, R.R.; Sheremet, E.; Rodriguez, R.D.; Feng, Z.-S. All-inkjet-printed MoS2 field-effect transistors on paper for low-cost and flexible electronics. Appl. Nanosci. 2020, 10, 3649–3658. [Google Scholar] [CrossRef]
- Seo, J.-W.T.; Zhu, J.; Sangwan, V.K.; Secor, E.B.; Wallace, S.G.; Hersam, M.C. Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 5675–5681. [Google Scholar] [CrossRef]
- Lotya, M.; Rakovich, A.; Donegan, J.F.; Coleman, J.N. Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology 2013, 24, 265703. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Zheng, Y.; Wang, Q.; Chen, H.; Dou, H.; Yu, H. Efficient exfoliation of layered materials by waste liquor. Nanotechnology 2018, 29, 095603. [Google Scholar] [CrossRef]
- Backes, C.; Hanlon, D.; Szydlowska, B.M.; Harvey, A.; Smith, R.J.; Higgins, T.M.; Coleman, J.N. Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. JoVE 2016, 118, e54806. [Google Scholar] [CrossRef] [Green Version]
- Majee, S.; Liu, C.; Wu, B.; Zhang, S.L.; Zhang, Z.B. Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 2017, 114, 77–83. [Google Scholar] [CrossRef]
- Desai, J.A.; Adhikari, N.; Kaul, A.B. Chemical exfoliation efficacy of semiconducting WS2 and its use in an additively manufactured heterostructure graphene–WS2–graphene photodiode. RSC Adv. 2019, 9, 25805–25816. [Google Scholar] [CrossRef] [Green Version]
- Hon, K.K.B.; Li, L.; Hutchings, I.M. Direct writing technology—Advances and developments. CIRP Ann. 2008, 57, 601–620. [Google Scholar] [CrossRef]
- Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25, 2629–2635. [Google Scholar] [CrossRef]
- Nayak, L.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 2019, 7, 8771–8795. [Google Scholar] [CrossRef]
- Derby, B. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Vural, M.; Pena-Francesch, A.; Bars-Pomes, J.; Jung, H.; Gudapati, H.; Hatter, C.B.; Allen, B.D.; Anasori, B.; Ozbolat, I.T.; Gogotsi, Y.; et al. Inkjet Printing of Self-Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli-Responsive Electromagnetic Shielding. Adv. Funct. Mater. 2018, 28, 1801972. [Google Scholar] [CrossRef]
- Hossain, R.F.; Deaguero, I.G.; Boland, T.; Kaul, A.B. Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. npj 2d Mater. Appl. 2017, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- Farina, F.E.; Binti Azmi, W.S.; Harafuji, K. Ultraviolet-ozone anode surface treatment and its effect on organic solar cells. Thin Solid Film. 2017, 623, 72–83. [Google Scholar] [CrossRef]
- Park, H.Y.; Kang, B.J.; Lee, D.; Oh, J.H. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment. Thin Solid Film. 2013, 546, 162–166. [Google Scholar] [CrossRef]
- Chalker, J.T.; Coddington, P.D. Percolation, quantum tunnelling and the integer Hall effect. J. Phys. C Solid State Phys. 1988, 21, 2665–2679. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. [Google Scholar] [CrossRef]
- Khan, T.; Irfan, M.S.; Ali, M.; Dong, Y.; Ramakrishna, S.; Umer, R. Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon 2021, 176, 602–631. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, Y. Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv. Mater. Technol. 2019, 4, 1800546. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 2019, 48, 1712–1740. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.G.; Murphy, C.; Vega-Mayoral, V.; Harvey, A.; Esmaeily, A.S.; Hallam, T.; McCloskey, D.; Coleman, J.N. Tuneable photoconductivity and mobility enhancement in printed MoS2/graphene composites. 2d Mater. 2017, 4, 041006. [Google Scholar] [CrossRef]
- Leng, T.; Parvez, K.; Pan, K.; Ali, J.; McManus, D.; Novoselov, K.S.; Casiraghi, C.; Hu, Z. Printed graphene/WS2 battery-free wireless photosensor on papers. 2d Mater. 2020, 7, 024004. [Google Scholar] [CrossRef]
- Carey, T.; Arbab, A.; Anzi, L.; Bristow, H.; Hui, F.; Bohm, S.; Wyatt-Moon, G.; Flewitt, A.; Wadsworth, A.; Gasparini, N.; et al. Inkjet Printed Circuits with 2D Semiconductor Inks for High-Performance Electronics. Adv. Electron. Mater. 2021, 7, 2100112. [Google Scholar] [CrossRef]
- Wen, D.; Wang, X.; Liu, L.; Hu, C.; Sun, C.; Wu, Y.; Zhao, Y.; Zhang, J.; Liu, X.; Ying, G. Inkjet Printing Transparent and Conductive MXene (Ti3C2Tx) Films: A Strategy for Flexible Energy Storage Devices. ACS Appl. Mater. Interfaces 2021, 13, 17766–17780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mehrali, M.; Zhang, Y.-Z.; Timmerman, M.A.; Boukamp, B.A.; Xu, P.-Y.; ten Elshof, J.E. Tunable capacitance in all-inkjet-printed nanosheet heterostructures. Energy Storage Mater. 2021, 36, 318–325. [Google Scholar] [CrossRef]
- Karim, N.; Afroj, S.; Malandraki, A.; Butterworth, S.; Beach, C.; Rigout, M.; Novoselov, K.S.; Casson, A.J.; Yeates, S.G. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 2017, 5, 11640–11648. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, Z.; Liu, Z.; Xue, J.; Xin, G.; Yu, Q.; Lian, J.; Chen, M.Y. Annealed graphene sheets decorated with silver nanoparticles for inkjet printing. Chem. Eng. J. 2015, 260, 582–589. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Cao, Y.; Zhu, Y.; Das, P.; Wang, H.; Liu, Y.; Wang, J.; Chi, L.; Liu, S.; et al. Micro-Supercapacitors: Aqueous MXene/PH1000 Hybrid Inks for Inkjet-Printing Micro-Supercapacitors with Unprecedented Volumetric Capacitance and Modular Self-Powered Microelectronics (Adv. Energy Mater. 23/2021). Adv. Energy Mater. 2021, 11, 2170088. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Y.; Xiao, Y.; Meng, B.; Xing, C.; Zhang, H.; Peng, Z. A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale 2019, 11, 21522–21531. [Google Scholar] [CrossRef]
- Zheng, J.; Diao, J.; Jin, Y.; Ding, A.; Wang, B.; Wu, L.; Weng, B.; Chen, J. An Inkjet Printed Ti3C2-GO Electrode for the Electrochemical Sensing of Hydrogen Peroxide. J. Electrochem. Soc. 2018, 165, B227–B231. [Google Scholar] [CrossRef]
Materials | Exfoliation | 2D Materials | Ref. | ||||
---|---|---|---|---|---|---|---|
Solvent | Surfactant and Binders | Sonication | Time (h) | Thickness | Lateral Size | ||
Graphene | DMF | EC | Bath | 40 | - | 100–500 nm | [43] |
Graphene | IPA | PVP | Bath | 12 | <10 nm | 200 nm | [44] |
Graphene | IPA | PVP | Bath | 12 | <5.9 nm | 196 nm | [29] |
Graphene | NMP | Bath (20W) | 9 | Single | 300 nm | [45] | |
Graphene | NMP | CMC | Bath | 9 | 6 nm | 121 nm | [34] |
Graphene | Water | PS1 salt | Bath (300W) | 72 | <10 layer | 400 nm | [7] |
Graphene | Cyclohexanone | EC | Probe (120W) | 7 | < 1 nm | 30–100 nm | [46] |
Graphene | Ethanol | EC | Probe (50W) | 1.5 | <2 nm | 50 nm | [40] |
Graphene | NMP | Probe (120W) | 7 | <10 layer | 35–600 nm | [17] | |
Graphene BN | NMP IPA | Probe (120W) | 1.5 | <8 nm | 195 nm 450 nm | [47] | |
BP | NMP | Probe (120W) | 1 | 3.6 nm | 234 nm | [22] | |
BP | NMP | Probe | 12 | 3.37 nm | 80.46 nm | [20] | |
MoS2 | DMF | EC | Bath | 48 | <7 nm | 40–100 nm | [36] |
MoS2 | Ethanol, water | PVP | Bath | 48 | - | 100–200 nm | [48] |
MoS2 | Ethanol, water | Bath (with grinding) | 2 | 1.2–8.5 nm | 20–60 nm | [32] | |
MoS2 | Ethanol | EC | Shear mixer | 2 | <6nm | <100 nm | [49] |
Materials | Exfoliation | Ink Formulation | Substrate | Application | Ref. | ||
---|---|---|---|---|---|---|---|
Solvent | Surfactant and Binders | Solvent | Surfactant and Binders | ||||
2D Material inks | |||||||
Graphene | Cyclohexanone | EC | Cyclohexanone | EC | Si/SiO2, PI, PET | Conductive ink | [46] |
Graphene | DMF | C/T | EC | Kapton, Glass | Microsupercapacitors | [43] | |
Graphene | DMF | EC | Terpineol/ ethanol | Kapton, Glass | Microsupercapacitors | [37] | |
Graphene | Ethanol | EC | C/T | EC | Si/SiO2 | Conductive ink | [40] |
Graphene | IPA | PVP | IPA | PVP | Si/SiO2 | Thermoelectrics | [44] |
Graphene | IPA | PVP | IPA | PVP | Glass | Solar cells | [29] |
Graphene | NMP | NMP | Ethylene glycol | Si/SiO2 | Conductive ink | [45] | |
Graphene, h-BN | NMP Water | CMC | Ethanol Water | Textile | Conductive ink | [34] | |
Graphene, MoS2 | IPA, C/T, DMA, DMF, NMP | EC | NMP | EC | Si/SiO2, PET | Conductive ink | [41] |
Graphene BN | NMP IPA | NMP IPA | PET | Capacitors | [47] | ||
Graphene, MoS2 | IPA, C/T, NMP | C/T | EC | PET, Pi | Photodetectors | [60] | |
Graphene, MoS2 | NMP | NMP | Glass | Photodetectors | [69] | ||
Graphene, MoS2 | NMP | NMP | PET | Conductive ink | [17] | ||
Graphene, WS2 | Water | PS1 salt | Water | Triton x-100, Propylene glycol | Paper | Photodetectors | [70] |
Graphene, WS2, MoS2, BN | Water | PS1 salt | Water | Triton x-100, Propylene glycol | Si/SiO2, PI, Quartz, PET | Photodetectors, memory | [7] |
BP | NMP | 2ME | Si/SiO2 | Diode | [22] | ||
BP | NMP, CHP, IPA | IPA | 2-butanol | Si/SiO2, Glass, PET | Photonic device | [20] | |
MoS2 | Water/IPA | PVP | Water/IPA | Propylene glycol | PI | Microsupercapacitors | [18] |
MoS2 | DMF | PVP | IPA | PVP | Si/SiO2 | CMOS logic | [71] |
MoS2 | DMF | EC | DMF/ Terpineol/ Ethanol | Si/SiO2 | Photodetectors | [36] | |
MoS2 | Ethanol | EC | C/T | Glass, PI | Photodetectors | [49] | |
MoS2 | Ethanol, water | PVP | Ethanol/water / n-propanol | Glycerol/ethylene glycol | paper | Conductive ink | [48] |
MoS2 | Ethanol, water | Ethanol/water | Glycerol | Si/SiO2 | Gas sensor | [32] | |
MXene | Water | NMP | Paper | Energy Storage Devices | [72] | ||
MXene | Water | DMSO | PET | Electromagnetic shielding | [59] | ||
MXene | Water, NMP | Water, NMP | DMSO/DMF/ Ethanol | PET, Glass, Kapton | Microsupercapacitors | [9] | |
MXene | IPA | IPA | Si/SiO2, PET | Laser | [21] | ||
MXene, GO | Water | Water | Triton x-100, Propylene glycol | Si/SiO2, PI | Microsupercapacitors | [73] | |
WS2 | C/T | EC | C/T | EC | Si/SiO2 | Photodiode | [54] |
rGO | Water | PVA | Water | Glycerol/ Triton x-100 | Si/SiO2, Cotton fabric | Wearable application | [74] |
GO | Water | Ethylene glycol | Water | Ethylene glycol | Glass | H2O2 sensor | [38] |
GO | Water | Water | Si/SiO2 | Conductive ink | [42] | ||
Hybrid ink | |||||||
Graphene/Ag | C/T | EC | C/T | EC | Si/SiO2 | Conductive ink | [75] |
MXene/ PEDOT:PSS | Water | Water | Ethylene glycol | PET | Microsupercapacitors | [76] | |
Mxene/Ag | NMP | Water | Ethylene glycol | PET, PEN | Touchless sensor | [77] | |
MXene/GO | Water | Water | Nafion polymer | Glass, gold foil | Hydrogen peroxide sensor | [78] |
Printing Metrics | Dimension of 2D NSs | Ink Concentration | Solvent and Additive | Substrate Treatment | Substrate Temperature | Droplet Spacing | Printing Repetition |
---|---|---|---|---|---|---|---|
Exfoliation | ✓ | ✓ | ✓ | ||||
Droplet stability | ✓ | ✓ | |||||
Coffee ring effect | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Percolation network | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, H.-Y.; Kim, S.-J.; Choi, C.-H. Ink Formulation and Printing Parameters for Inkjet Printing of Two Dimensional Materials: A Mini Review. Nanomaterials 2021, 11, 3441. https://doi.org/10.3390/nano11123441
Jun H-Y, Kim S-J, Choi C-H. Ink Formulation and Printing Parameters for Inkjet Printing of Two Dimensional Materials: A Mini Review. Nanomaterials. 2021; 11(12):3441. https://doi.org/10.3390/nano11123441
Chicago/Turabian StyleJun, Ho-Young, Se-Jung Kim, and Chang-Ho Choi. 2021. "Ink Formulation and Printing Parameters for Inkjet Printing of Two Dimensional Materials: A Mini Review" Nanomaterials 11, no. 12: 3441. https://doi.org/10.3390/nano11123441
APA StyleJun, H. -Y., Kim, S. -J., & Choi, C. -H. (2021). Ink Formulation and Printing Parameters for Inkjet Printing of Two Dimensional Materials: A Mini Review. Nanomaterials, 11(12), 3441. https://doi.org/10.3390/nano11123441