Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wiltraud, W.; Powalla, M. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 2011, 19, 894–897. [Google Scholar] [CrossRef]
- Repins, I.; Contreras, M.A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C.L.; To, B.; Noufi, R. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Photovolt. Res. Appl. 2008, 16, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, Y.; Kou, X.L.; Cai, Y.A.; Liu, W.; Yu, T.; Pang, J.B.; Li, C.J.; Sun, Y. Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process. Semicond. Sci. Technol. 2010, 25, 055007. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, H.; Weber, A.; Lauche, J.; Kaufmann, C.A.; Rissom, T.; Greiner, D.; Klaus, M.; Unold, T.; Genzel, C.; Schock, H.-W.; et al. Formation of CuInSe2 and CuGaSe2 thin films deposited by three-stage thermal co-evaporation: A real-time X-ray diffraction and fluorescence study. Adv. Energy Mater. 2013, 3, 1381–1387. [Google Scholar] [CrossRef]
- Hibberd, C.J.; Chassaing, E.; Liu, W.; Mitzi, D.B.; Lincot, D.; Tiwari, A.N. Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog. Photovolt. 2010, 18, 434–452. [Google Scholar] [CrossRef]
- Wada, T.; Kohara, N.; Nishiwaki, S.; Negami, T. Characterization of the Cu(In, Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films 2001, 387, 118–122. [Google Scholar] [CrossRef]
- Ahn, S.J.; Kim, K.H.; Yun, J.H.; Yoon, K.H. Effects of selenization conditions on densification of Cu(In, Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles. J. Appl. Phys. 2009, 105, 113533. [Google Scholar]
- Abou-Ras, D.; Kostorz, G.; Bremaud, D.; Kälin, M.; Kurdesau, F.V.; Tiwari, A.N.; Döbeli, M. Formation and characterization of MoSe2 for Cu(In, Ga)Se2 based solar cells. Thin Solid Films 2005, 480–481, 433–438. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Shen, M.-T.; Chen, Y.-L.; Hsu, H.-R.; Wu, C.-H. A study on MoSe2 layer of Mo contact in Cu(In, Ga)Se2 thin film solar cells. Thin Solid Films 2014, 507, 166–171. [Google Scholar] [CrossRef]
- Wang, S.-Q. Barriers against copper diffusion into silicon and drift through silicon dioxide. Mater. Res. Bull. 1994, 19, 30–40. [Google Scholar] [CrossRef]
- Park, K.-C.; Kim, K.-B. Effect of annealing of titanium nitride on the diffusion barrier property in Cu metallization. J. Electrochem. Soc. 1995, 142, 3109–3115. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Kwon, O.-K.; Min, J.-S.; Kang, S.-W. Plasma-enhanced atomic layer deposition of Ru-TiN thin films for copper diffusion barrier metals. J. Electrochem. Soc. 2006, 153, G578–G581. [Google Scholar] [CrossRef]
- Delft, J.A.; Alonso-Garcia, D.; Kessels, W.M.M. Atomic layer deposition for photovoltaics: Applications and prospects for solar cell manufacturing. Semicond. Sci. Technol. 2012, 27, 074002. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Khoo, K.T.; Gui, X.; Poduval, G.K.; Zhang, T.; Li, X.; Li, W.M.; Hoex, B. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Mater. Sci. 2020, 2, 204–226. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Laemmle, A.; Wuerz, R.; Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.-P.; Powalla, M. Investigation of the diffusion behavior of sodium in Cu(In, Ga)Se2 layers. J. Appl. Phys. 2014, 115, 154501. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, D.Y.; Park, H.O.; Jeon, H. Characteristics and compositional variation of TiN films deposited by remote PEALD on contact holes. J. Electrochem. Soc. 2005, 152, G29–G34. [Google Scholar] [CrossRef]
- Lee, W.-J.; Yun, E.-Y.; Lee, H.-B.-R.; Hong, S.W.; Kwon, S.-H. Ultrathin effective TiN protective films prepared by plasma-enhanced atomic layer deposition for high performance metallic bipolar plates of polymer electrolyte membrane fuel cells. Appl. Surf. Sci. 2020, 519, 146215. [Google Scholar] [CrossRef]
- Shin, B.; Zhu, Y.; Bojarczuk, N.A.; Chey, S.J.; Guha, S. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Appl. Phys. Lett. 2012, 101, 053903. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhao, W.; Nam, D.; Cheong, H.; Wu, L.; Zhou, Z.; Sun, Y. A temporary barrier effect of the alloy layer during selenization: Tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv. Energy Mater. 2015, 5, 1402178. [Google Scholar] [CrossRef]
- Claesson, Y.; Georgson, M.; Roos, A.; Ribbing, C.-G. Optical characterization of titanium-nitride-based solar control coatings. Solar Energy Mater. 1990, 20, 455–465. [Google Scholar] [CrossRef]
- Malmström, J.; Schleussner, S.; Stolt, L. Enhanced back reflectance and quantum efficiency in Cu(In, Ga)Se2 thin films solar cells with a ZrN back reflector. Appl. Phys. Lett. 2004, 85, 2634. [Google Scholar] [CrossRef]
- Islam, M.M.; Sakurai, T.; Ishizuka, S.; Yamada, A.; Shibata, H.; Sakurai, K.; Matsubara, K.; Niki, S.; Akimoto, K. Effect of Se/(Ga+In) ratio on MBE grown Cu(In, Ga)Se2 thin film solar cell. J. Cryst. Growth 2009, 311, 2212–2214. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsieh, Y.-T.; Lai, C.-M.; Hsu, H.-R. Impact of Mo barrier layer on the formation of MoSe2 in Cu(In, Ga)Se2 solar cells. J. Alloy Compd. 2016, 661, 168–175. [Google Scholar] [CrossRef]
- Cao, Q.; Gunawan, O.; Copel, M.; Reuter, K.B.; Chey, S.J.; Deline, V.R.; Mitzi, D.B. Defects in Cu(In, Ga)Se2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance. Adv. Energy Mater. 2011, 1, 845–853. [Google Scholar] [CrossRef]
Back Contact Stack | Eff (%) | FF (%) | Voc (V) | Jsc (A/cm2) | Rs (Ω) |
---|---|---|---|---|---|
Mo | 9.055 | 62.86 | 0.5182 | 27.80 | 7.36 |
Mo/TiN/Mo | 9.944 | 66.45 | 0.5286 | 28.31 | 7.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.-J.; Lee, W.-J.; Koh, E.-K.; Jang, S.I.; Kim, S.; Moon, H.; Kwon, S.-H. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells. Nanomaterials 2021, 11, 370. https://doi.org/10.3390/nano11020370
Woo H-J, Lee W-J, Koh E-K, Jang SI, Kim S, Moon H, Kwon S-H. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells. Nanomaterials. 2021; 11(2):370. https://doi.org/10.3390/nano11020370
Chicago/Turabian StyleWoo, Hyun-Jae, Woo-Jae Lee, Eun-Kyong Koh, Seung Il Jang, Shinho Kim, Hyoungseok Moon, and Se-Hun Kwon. 2021. "Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells" Nanomaterials 11, no. 2: 370. https://doi.org/10.3390/nano11020370
APA StyleWoo, H.-J., Lee, W.-J., Koh, E.-K., Jang, S. I., Kim, S., Moon, H., & Kwon, S.-H. (2021). Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells. Nanomaterials, 11(2), 370. https://doi.org/10.3390/nano11020370