B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. X-ray Diffraction (XRD) (Melt-Quenched Samples)
3.2. XRD (Ball-Milled Samples)
3.3. Magic-Angle Spinning Nuclear Magnetic Resonance (MAS NMR) (Melt-Quenched Samples)
3.4. Magic-Angle Spinning Nuclear Magnetic Resonance (MAS NMR) (Ball-Milled Samples)
4. Conclusions
- XRD studies show that the addition of B2O3 improves the glass-forming properties of LATP-based glasses prepared by the melt-quenching method (as evidenced by the lower amount of crystalline precipitation) and results in more effective amorphization of LAT(B)P materials during the ball-milling process (the amount of crystalline precipitation is considerably reduced due to boron addition).
- XRD studies show that the crystallization of LAT(B)P glasses leads to the formation of LATP phase, which is predominant in all studied materials. However, for the boron-incorporated materials, the concentration of foreign phases is lower than in the case of boron-free LATP ceramic.
- MAS NMR results are consistent with XRD studies and show that LATBP01_MQ material is characterized by the highest content of LATP phase among all studied materials.
- MAS NMR studies also show that the introduction of boron to the lithium aluminum titanium phosphate increases the concentration of P(OTi)3(OAl)1, P(OTi)2(OAl)2 and P(OTi)1(OAl)3 structural units leading to a content closer to nominal content of Al3+ in LATP phase and a reduced content of other phosphate phases.
- MAS NMR allows two LATP phases of slightly different chemical composition to be distinguished. This suggests that LATP grains may not be homogeneous, where regions closer to grain boundaries have different chemical composition than grain interiors.
- According to the MAS NMR results, boron in the BO4 environment is predominant for all MQ and BM materials.
Author Contributions
Funding
Conflicts of Interest
References
- Goodenough, J.B. Batteries and a sustainable modern society. Electrochem. Soc. Interface 2016, 25, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhao, C.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.; Yu, D.; Liu, Y.; Titirici, M.; Chueh, Y.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M.J.; Chung, H.Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322. [Google Scholar] [CrossRef]
- Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. J. Electrochem. Soc. 2017, 164, A1731–A1744. [Google Scholar] [CrossRef]
- Tan DH, S.; Banerjee, A.; Chen, Z.; Meng, Y.S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xie, Z.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renew. Sustain. Energy Rev. 2019, 109, 367–385. [Google Scholar] [CrossRef]
- Kostopoulou, A.; Brintakis, K.; Nasikas, N.K.; Stratakis, E. Perovskite nanocrystals for energy conversion and storage. Nanophotonics 2019, 8, 1607–1640. [Google Scholar] [CrossRef]
- Stramare, S.; Thangadurai, V.; Weppner, W. Lithium Lanthanum Titanates: A Review. Chem. Mater. 2003, 15, 3974–3990. [Google Scholar] [CrossRef]
- Hua, C.; Fang, X.; Wang, Z.; Chen, L. Lithium storage in perovskite lithium lanthanum titanate. Electrochem. Commun. 2013, 32, 5–8. [Google Scholar] [CrossRef]
- Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727. [Google Scholar] [CrossRef]
- Cao, S.; Song, S.; Xiang, X.; Hu, Q.; Zhang, C.; Xia, Z.; Xu, Y.; Zha, W.; Li, J.; Gonzale, P.M.; et al. Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: A review. J. Korean Ceram. Soc. 2019, 56, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Takada, K. Secondary Batteries—Lithium Rechargeable Systems—Lithium-Ion|Electrolytes: Solid Oxide. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 328–336. ISBN 978-0-444-52745-5. [Google Scholar]
- Jian, Z.; Hu, Y.S.; Ji, X.; Chen, W. NASICON-Structured Materials for Energy Storage. Adv. Mater. 2017, 29, 1601925. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Liang, F.; Chen, K.; Dai, Y.; Xue, D. Nanotechnology Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries Recent citations. Nanotechnology 2020, 31, 132003. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Eames, C.; Fleutot, B.; David, R.; Chotard, J.-N.; Suard, E.; Masquelier, C.; Islam, M.S. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. ACS Appl. Mater. Interfaces 2017, 9, 7050–7058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, P.G. The A-C Conductivity of Polycrystalline LISICON, Li2+2xZn1−xGeO4, and a Model for Intergranular Constriction Resistances. J. Electrochem. Soc. 1983, 130, 662–669. [Google Scholar] [CrossRef]
- Ivanov-Shits, A.K.; Sigaryov, S.E. Ionic conductivity in LISICON-type materials. Solid State Ionics 1988, 27, 89–100. [Google Scholar] [CrossRef]
- Chowdari BV, R.; Radhakrishnan, K.; Thomas, K.A.; Subba Rao, G.V. Ionic conductivity studies on Li1-xM2-xM′xP3O12 (H = Hf, Zr; M′ = Ti, Nb). Mater. Res. Bull. 1989, 24, 221–229. [Google Scholar] [CrossRef]
- Takada, K. Lithium ion conduction in LiTi2(PO4)3. Solid State Ionics 2001, 139, 241–247. [Google Scholar] [CrossRef]
- Aono, H. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 1990, 137, 1023–1027. [Google Scholar] [CrossRef]
- Ma, F.; Zhao, E.; Zhu, S.; Yan, W.; Sun, D.; Jin, Y.; Nan, C. Preparation and evaluation of high lithium ion conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte obtained using a new solution method. Solid State Ionics 2016, 295, 7–12. [Google Scholar] [CrossRef]
- Zhao, E.; Ma, F.; Jin, Y.; Kanamura, K. Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant. J. Alloys Compd. 2016, 680, 646–653. [Google Scholar] [CrossRef]
- Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 2015, 35, 1477–1484. [Google Scholar] [CrossRef]
- Kosova, N.V.; Devyatkina, E.T.; Stepanov, A.P.; Buzlukov, A.L. Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2-xAlx(PO4)3 (x=∈0; 0.3) prepared by mechanical activation. Ionics 2008, 14, 303–311. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, J.; Park, C.; Shin, D. The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7 (Po4)3 electrolytes by a sol-gel method. J. Ceram. Process. Res. 2013, 14, 563–566. [Google Scholar]
- Waetzig, K.; Rost, A.; Heubner, C.; Coeler, M.; Nikolowski, K.; Wolter, M.; Schilm, J. Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity. J. Alloys Compd. 2020, 818, 153237. [Google Scholar] [CrossRef]
- Arbi, K.; Mandal, S.; Rojo, J.M.; Sanz, J. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem. Mater. 2002, 14, 1091–1097. [Google Scholar] [CrossRef]
- Jackman, S.D.; Cutler, R.A. Effect of microcracking on ionic conductivity in LATP. J. Power Sources 2012, 218, 65–72. [Google Scholar] [CrossRef]
- Waetzig, K.; Rost, A.; Langklotz, U.; Matthey, B.; Schilm, J. An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics. J. Eur. Ceram. Soc. 2016, 36, 1995–2001. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Wasiucionek, M.; Michalski, P.P.; Kaleta, A.; Garbarczyk, J.E. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2016, 213, 140–147. [Google Scholar] [CrossRef]
- Thokchom, J.S.; Kumar, B. Microstructural effects on the superionic conductivity of a lithiated glass-ceramic. Solid State Ionics 2006, 177, 727–732. [Google Scholar] [CrossRef]
- Narváez-Semanate, J.L.; Rodrigues, A.C.M. Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics. Solid State Ionics 2010, 181, 1197–1204. [Google Scholar] [CrossRef]
- Chowdari, B.V.R.; Subba Rao, G.V.; Lee, G.Y.H. XPS and ionic conductivity studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 glass-ceramics. Solid State Ionics 2000, 136–137, 1067–1075. [Google Scholar] [CrossRef]
- Fu, J. Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 1997, 96, 195–200. [Google Scholar] [CrossRef]
- Chen, H.; Tao, H.; Wu, Q.; Zhao, X. Crystallization kinetics of superionic conductive Al(B, La)- incorporated LiTi2(PO4)3 glass-ceramics. J. Am. Ceram. Soc. 2013, 96, 801–805. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Cho, M.-S.; Kalubarme, R.S.; Lee, J.-S.; Jung, K.-N.; Shin, K.-H.; Park, C.-J. Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics. J. Power Sources 2013, 241, 502–508. [Google Scholar] [CrossRef]
- Abdel-Hameed, S.A.M.; Fathi, A.M.; Elwan, R.L.; Margha, F.H. Effect of F− and B3+ ions and heat treatment on the enhancement of electrochemical and electrical properties of nanosized LiTi2(PO4)3 glass-ceramic for lithium-ion batteries. J. Alloys Compd. 2020, 832, 154943. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jung, K.N.; Lee, J.W.; Park, M.S. Improving the ionic conductivity of Li1+xAlxGe2-x(PO4)3 solid electrolyte for all-solid-state batteries using microstructural modifiers. Ceram. Int. 2020, 46, 23200–23207. [Google Scholar] [CrossRef]
- Ślubowska, W.; Kwatek, K.; Jastrzębski, C.; Nowiński, J.L. Thermal, structural and electrical study of boron-incorporated LATP glasses and glass-ceramics. Solid State Ionics 2019, 335, 129–134. [Google Scholar] [CrossRef]
- Koch, C.C. Amorphization by mechanical alloying. J. Non-Cryst. Solids 1990, 117–118, 670–678. [Google Scholar] [CrossRef]
- Weeber, A.W.; Bakker, H. Amorphization by ball milling. A review. Phys. B Phys. Condens. Matter 1988, 153, 93–135. [Google Scholar] [CrossRef]
- Yavari, A.R. Mechanically Prepared Nanocrystalline Materials (Overview). Mater. Trans. JIM 1995, 36, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Dalvi, A. Mechanical milling assisted synthesis of novel LiTi2(PO4)3-glass-ceramic nanocomposites. J. Non-Cryst. Solids 2018, 483, 126–133. [Google Scholar] [CrossRef]
- Xu, X.; Wen, Z.; Yang, X.; Zhang, J.; Gu, Z. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics 2006, 177, 2611–2615. [Google Scholar] [CrossRef]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Best, A.S.; Forsyth, M.; MacFarlane, D.R. Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2-x(PO4)3: Impedance, X-ray and NMR studies. Solid State Ionics 2000, 136–137, 339–344. [Google Scholar] [CrossRef]
- Soman, S.; Iwai, Y.; Kawamura, J.; Kulkarni, A. Crystalline phase content and ionic conductivity correlation in LATP glass-ceramic. J. Solid State Electrochem. 2012, 16, 1761–1766. [Google Scholar] [CrossRef]
- Kwatek, K.; Ślubowska, W.; Trébosc, J.; Lafon, O.; Nowiński, J.L. Impact of Li2.9B0.9S0.1O3.1 glass additive on the structure and electrical properties of the LATP-based ceramics. J. Alloys Compd. 2020, 820, 153072. [Google Scholar] [CrossRef]
- Yamada, H.; Tsunoe, D.; Shiraishi, S.; Isomichi, G. Reduced grain boundary resistance by surface modification. J. Phys. Chem. C 2015, 119, 5412–5419. [Google Scholar] [CrossRef]
- Kwatek, K.; Ślubowska, W.; Ruiz, C.; Sobrados, I.; Sanz, J.; Garbarczyk, J.; Nowiński, J. The mechanism of enhanced ionic conductivity in Li1.3Al0.3Ti1.7(PO4)3–(0.75Li2O·0.25B2O3) composites. J. Alloys Compd. 2020, 838, 155623. [Google Scholar] [CrossRef]
- D’Anciães Almeida Silva, I.; Nieto-Muñoz, A.M.; Rodrigues, A.C.M.; Eckert, H. Structure and lithium-ion mobility in Li1.5M0.5Ge1.5(PO4)3 (M = Ga, Sc, Y) NASICON glass-ceramics. J. Am. Ceram. Soc. 2020, 103, 4002–4012. [Google Scholar] [CrossRef] [Green Version]
- Raguž, B.; Wittich, K.; Glaum, R. Two New, Metastable Polymorphs of Lithium Pyrophosphate Li4P2O7. Eur. J. Inorg. Chem. 2019, 2019, 1688–1696. [Google Scholar] [CrossRef]
- Arbi, K.; Rojo, J.M.; Sanz, J. Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J. Eur. Ceram. Soc. 2007, 27, 4215–4218. [Google Scholar] [CrossRef]
- Jimenez, R.; Sobrados, I.; Martínez-Chaparro, S.; Del Campo, A.; Calzada, M.L.; Sanz, J.; Tsai, S.Y.; Lin, M.R.; Fung, K.Z.; Kazakevičius, E.; et al. Preparation and Characterization of Large Area Li-NASICON Electrolyte Thick Films. Inorganics 2019, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Vinod Chandran, C.; Pristat, S.; Witt, E.; Tietz, F.; Heitjans, P. Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li1+xAlxTi2-x(PO4)3 (0.0 ≤ x ≤ 1.0). J. Phys. Chem. C 2016, 120, 8436–8442. [Google Scholar] [CrossRef]
- Kahlaoui, R.; Arbi, K.; Sobrados, I.; Jimenez, R.; Sanz, J.; Ternane, R. Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study. Inorg. Chem. 2017, 56, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
GLASS CODE | Li2O | Al2O3 | B2O3 | TiO2 | P2O5 |
---|---|---|---|---|---|
LATP_GLASS | 16.25 | 3.75 | 0 | 42.5 | 37.5 |
LATBP01_GLASS | 17.5 | 3.75 | 1.25 | 40 | 37.5 |
LATBP03 _GLASS | 20 | 3.75 | 3.75 | 35 | 37.5 |
AlO4 (AlPO4) | AlO5 (Residual Glassy Phase) | AlO6 (LATP_1) | AlO6 (LATP_2) | AlO6 (LiAlP2O7) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] |
LATP_MQ_CERAMIC | 38.6 | 38.6 | 58.3 | 32.8 | 8 | 8.3 | −15.3 | 4.1 | 16.4 | −17.7 | 4.1 | 10.7 | −21.4 | 7.7 | 5.4 |
LATBP0.1_MQ_CERAMIC | 38.6 | 38.6 | 29.2 | −14.9 | 3.5 | 48.7 | −17.8 | 3.5 | 14.1 | −21.3 | 7.7 | 8.0 | |||
LATBP0.3_MQ_CERAMIC | 40.6 | 40.6 | 59.4 | −14.6 | 2.8 | 21.0 | −16.3 | 2.8 | 17.6 | −21.3 | 7.7 | 2.0 |
Composition | P(OTi)4 (I) | P(OTi)4 (II) | P(OTi)3(OAl)1 (I) | P(OTi)3(OAl)1 (II) | |||||||||||
Sample Code | xNOM | xNMR | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | |
LATP_MQ_CERAMIC | 0.3 | 0.15 | −27.9 | 0.6 | 3.2 | −27.5 | 1.1 | 52.5 | −26.5 | 0.6 | 1.4 | −25.9 | 1.1 | 5.6 | |
LATBP01_MQ_CERAMIC | 0.3 | 0.36 | −27.6 | 0.8 | 4.8 | −27.0 | 1.9 | 43.5 | −26.1 | 0.8 | 1.6 | −25.6 | 1.9 | 19.3 | |
LATBP03_MQ_CERAMIC | 0.3 | 0.31 | −27.7 | 0.6 | 4.4 | −27.4 | 1.4 | 44.3 | −26.6 | 0.6 | 1 | −26.2 | 1.4 | 15.1 | |
Composition | P(OTi)2(OAl)2 (II) | P(OTi)1(OAl)3 (II) | |||||||||||||
Sample Code | xNOM | xNMR | δ | FWHM | II [%] | δ [ppm] | FWHM | II [%] | |||||||
LATP_MQ_CERAMIC | 0.3 | 0.15 | −25.0 | 1.1 | 3.6 | −24.1 | 1.1 | 2.3 | |||||||
LATBP01_MQ_CERAMIC | 0.3 | 0.36 | −25.0 | 1.9 | 9.3 | −24.0 | 1.9 | 7.3 | |||||||
LATBP03_MQ_CERAMIC | 0.3 | 0.31 | −25.0 | 1.4 | 9.5 | −24.4 | 1.4 | 4.7 | |||||||
Composition | AlPO4 | Residual Glassy Phase | LiTiPO5 | ||||||||||||
Sample Code | xNOM | xNMR | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | ||||
LATP_MQ_CERAMIC | 0.3 | 0.15 | −30.5 | 3.8 | 9.3 | −22.6 | 5.8 | 11.3 | −9.8 | 0.6 | 10.4 | ||||
LATBP01_MQ_CERAMIC | 0.3 | 0.36 | −31.0 | 3.6 | 2.2 | −22.3 | 5.8 | 10.5 | −9.8 | 0.6 | 1.5 | ||||
LATBP03_MQ_CERAMIC | 0.3 | 0.31 | −30.5 | 3.6 | 1.2 | −22.6 | 5.8 | 6.3 | - | - | - |
AlO4 (AlPO4) | AlO5 or AlO6 | AlO6 (LATP) (II) | AlO6 (LATP) (I) | AlO6 (LiAlP2O7) | AlO4 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] |
LATP_MQ_CERAMIC | 40.2 | 4.5 | 11.9 | −9.6 | 4.8 | 3.5 | −14.3 | 2.4 | 61.5 | −15.8 | 2.4 | 16.3 | −20.1 | 6.7 | 6.8 | |||
LATBP01_MQ_CERAMIC | 41.1 | 4.8 | 14.2 | −9.6 | 4.8 | 4 | −14.3 | 2.6 | 55.4 | −15.6 | 2.6 | 14.2 | −20.1 | 6.7 | 7.8 | 37.4 | 4.8 | 4.5 |
LATBP03_MQ_CERAMIC | 40.6 | 5.2 | 23.7 | −9.6 | 4.8 | 3 | −14.3 | 2.4 | 46.9 | −15.8 | 2.4 | 11.5 | −20.1 | 6.7 | 7.1 | 37.4 | 5.2 | 7.9 |
Composition | P(OTi)4 (I) | P(OTi)4 (II) | P(OTi)3(OAl)1 (I) | P(OTi)3(OAl)1 (II) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | xNOM | xNMR | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] |
LATP_MQ_CERAMIC | 0.3 | 0.30 | −27.6 | 0.6 | 5.7 | −27.2 | 1.4 | 51.4 | −26.5 | 0.6 | 1.6 | −26 | 1.4 | 24.9 |
LATBP01_MQ_CERAMIC | 0.3 | 0.31 | −27.6 | 0.6 | 3.2 | −27.3 | 1.4 | 50 | −26.5 | 0.6 | 1 | −26.2 | 1.4 | 20.5 |
LATBP03_MQ_CERAMIC | 0.3 | 0.27 | −27.6 | 0.6 | 6 | −27.3 | 1.3 | 47.5 | −26.7 | 0.6 | 1.2 | −26.2 | 1.3 | 21.8 |
Composition | P(OTi)2(OAl)2 (II) | P(OTi)1(OAl)3 (II) | ||||||||||||
Sample Code | xNOM | xNMR | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | ||||||
LATP_MQ_CERAMIC | 0.3 | 0.30 | −25.3 | 1.4 | 9.1 | −24.4 | 1.4 | 4.9 | ||||||
LATBP01_MQ_CERAMIC | 0.3 | 0.31 | −25.5 | 1.4 | 10.5 | −24.4 | 1.4 | 4.3 | ||||||
LATBP03_MQ_CERAMIC | 0.3 | 0.27 | −25.2 | 1.3 | 8.3 | −24.2 | 1.3 | 2.7 | ||||||
Composition | AlPO4 | LiAlP2O7 | ||||||||||||
Sample Code | xNOM | xNMR | δ [ppm] | FWHM | II [%] | δ [ppm] | FWHM | II [%] | ||||||
LATP_MQ_CERAMIC | 0.3 | 0.30 | −30.2 | 2.2 | 0.2 | −22.9 | 4 | 2.3 | ||||||
LATBP01_MQ_CERAMIC | 0.3 | 0.31 | −30.4 | 2.5 | 0.9 | −22.9 | 4 | 3.8 | ||||||
LATBP03_MQ_CERAMIC | 0.3 | 0.27 | −30.3 | 2 | 3.5 | −22.8 | 4 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślubowska, W.; Montagne, L.; Lafon, O.; Méar, F.; Kwatek, K. B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods. Nanomaterials 2021, 11, 390. https://doi.org/10.3390/nano11020390
Ślubowska W, Montagne L, Lafon O, Méar F, Kwatek K. B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods. Nanomaterials. 2021; 11(2):390. https://doi.org/10.3390/nano11020390
Chicago/Turabian StyleŚlubowska, Wioleta, Lionel Montagne, Olivier Lafon, François Méar, and Konrad Kwatek. 2021. "B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods" Nanomaterials 11, no. 2: 390. https://doi.org/10.3390/nano11020390
APA StyleŚlubowska, W., Montagne, L., Lafon, O., Méar, F., & Kwatek, K. (2021). B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods. Nanomaterials, 11(2), 390. https://doi.org/10.3390/nano11020390