Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- -
- Since Cu diffusion in ZnS is far smaller than in MoO3, we are going to probe MoO3/ZnS/Ag/Cu:Ag/ZnS structures. The bilayer of dielectric MoO3/ZnS has a dual goal:
- -
- MoO3 allows an efficient collection of holes;
- -
- ZnS minimizes the diffusion of Cu.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Almora, O.; Baran, D.; Bazan, G.C.; Berger, C.; Cabrera, C.I.; Catchpole, K.R.; Erten-Ela, S.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; et al. Device Performance of Emerging Photovoltaic Materials (Version 1). Adv. Energy Mater. 2020, 2002774. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl. Sci. Rev. 2020, 7, 1239–1246. [Google Scholar] [CrossRef]
- Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J. Recent Progress in Chlorinated Organic Photovoltaic Materials. Acc. Chem. Res. 2020, 53, 822–832. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, J.; Li, Y.; Li, Y. Organic Solar Cell Materials toward Commercialization. Small 2018, 14, 1801793. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, K.; Dong, S.; Xia, R.; Huang, F.; Cao, Y. Semitransparent Organic Solar Cells Enabled by a Sequentially Deposited Bilayer Structure. ACS Appl. Mater. Interfaces 2020, 12, 18473–18481. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Peng, Z.; Qu, B.; Yan, H.; Ade, H.; Zhang, M.; Forrest, S.R. Color-neutral, semitransparent organic photovoltaics for power window applications. Proc. Natl. Acad. Sci. USA 2020, 117, 21147–21154. [Google Scholar] [CrossRef]
- Rwenyagila, E.R. A Review of Organic Photovoltaic Energy Source and Its Technological Designs. Int. J. Photoenergy 2017, 1656512. [Google Scholar] [CrossRef]
- Gaspar, H.; Figueira, F.; Pereira, L.; Mendes, A.; Viana, J.C.; Bernardo, G. Recent Developments in the Optimization of the Bulk Heterojunction Morphology of Polymer: Fullerene Solar Cells. Materials 2018, 11, 2560. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.W.; Jeon, S.J.; Lee, H.S.; Park, H.; Kim, K.S.; Lee, H.-W.; Moon, D.K. Evaporation-Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All-Solution Process. Adv. Energy Mater. 2019, 1902065. [Google Scholar] [CrossRef]
- Jeon, S.J.; Han, Y.W.; Moon, D.K. 13.9%-Efficiency and Eco-Friendly Nonfullerene Polymer Solar Cells Obtained by Balancing Molecular Weight and Solubility in Chlorinated Thiophene-Based Polymer Backbones. Small 2019, 1902598. [Google Scholar] [CrossRef]
- Jeon, S.J.; Han, Y.W.; Kim, Y.H.; Moon, D.K. Case Study on the Correlation between Crystal Packing and Miscibility of Chlorinated Thiophene–Based Donor Polymers for Nonfullerene Organic Solar Cells with Long Shelf Life. Sol. RRL 2020, 4, 2000074. [Google Scholar] [CrossRef]
- Bernède, J.C. Organic photovoltaic cells: History, principle and techniques. J. Chil. Chem. Soc. 2008, 53, 1549–1564. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-W.; Huang, C.-W.; Lin, S.-Y.; Liu, Y.-H.; Chatterjee, T.; Hung, W.-Y.; Liu, S.-W.; Wong, K.-T. Merocyanines for vacuum-deposited small-molecule organic solar cells. Org. Electr. 2015, 26, 319–326. [Google Scholar] [CrossRef]
- Po, R.; Roncali, J. Beyond efficiency: Scalability of molecular donor materials for organic photovoltaics. Mater. Chem. C 2016, 4, 3677. [Google Scholar] [CrossRef]
- Badgujar, S.; Lee, G.-Y.; Park, T.; Song, C.E.; Park, S.; Oh, S.; Shin, W.S.; Moon, S.-J.; Lee, J.-C.; Lee, S.K. High-Performance Small Molecule via Tailoring Intermolecular Interactions and its Application in Large-Area Organic Photovoltaic Modules. Adv. Energy Mater. 2016, 1600228. [Google Scholar] [CrossRef]
- Galindo, S.; Ahmadpour, M.; Gerling, L.G.; Marsal, A.; Voz, C.; Alcubilla, R.; Puigdollers, J. Influence of the density of states on the open-circuit voltage in small-molecule solar cells. Org. Electr. 2014, 15, 2553–2560. [Google Scholar] [CrossRef]
- Cnops, K.; Rand, B.P.; Cheyns, D.; Verreet, B.; Empl, M.A.; Heremans, P. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 2014, 5, 3406. [Google Scholar] [CrossRef] [Green Version]
- Camic, B.T.; Jeong, H.I.; Aslan, M.H.; Kosemen, A.; Kim, S.; Choi, H.; Basarir, F.; Lee, B.R. Preparation of Transparent Conductive Electrode via Layer-By-Layer Deposition of Silver Nanowires and Its Application in Organic Photovoltaic Device. Nanomaterials 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Guillén, C.; Herrero, J. TCO/metal/TCO structures for energy and flexible electronics. Thins Solid Films 2011, 520, 1–17. [Google Scholar] [CrossRef]
- Cattin, L.; Bernède, J.C.; Morsli, M. Toward indium-free optoelectronic devices: Dielectric/Metal/Dielectric alternative conductive transparent electrode in organic photovoltaic cells Phys. Status Solidi A 2013, 210, 1047–1061. [Google Scholar] [CrossRef]
- Gong, Y.; Dong, Y.; Zhao, B.; Yu, R.; Hub, S.; Tan, Z. Diverse applications of MoO3 for high performance organic photovoltaics: Fundamentals, processes and optimization strategies. J. Mater. Chem. A 2020, 8, 978. [Google Scholar] [CrossRef]
- Cattin, L.; Dahou, F.; Lare, Y.; Morsli, M.; Tricot, R.; Houari, S.; Mokrani, A.; Jondo, K.; Khelil, A.; Napo, K.; et al. MoO3 surface passivation of the transparent anode in organic solar cells using ultrathin films. J. Appl. Phys. 2009, 105, 034507. [Google Scholar] [CrossRef]
- Bernède, J.C.; Cattin, L. Dielectric/Metal/Dielectric flexible transparent electrodes, from smart window to semi-transparent solar cells. Asian J. Eng. Technol. 2019, 7, 176–195. [Google Scholar]
- Pérez Lopéz, I.; Cattin, L.; Nguyen, D.-T.; Morsli, M.; Bernède, J.C. Dielectric/metal/dielectric structures using copper as metal and MoO3 as dielectric for use as transparent electrode. Thin Solid Films 2012, 520, 6419–6423. [Google Scholar] [CrossRef]
- Cattin, L.; El Mahlali, A.; Cherif, M.A.; Touihri, S.; El Jouad, Z.; Mouchaal, Y.; Blanchard, P.; Louarn, G.; Essaidi, H.; Addou, M.; et al. New dielectric/metal/dielectric electrode for organic photovoltaic cells using Cu:Al alloy as metal. J. Alloys Compd. 2020, 819, 152974. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X. Inverted organic photovoltaic cells. Chem. Soc. Rev. 2016, 45, 2937–2975. [Google Scholar] [CrossRef]
- El Jouad, Z.; Morsli, M.; Louarn, G.; Cattin, L.; Addou, M.; Bernède, J.C. Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer. Sol. Energy Mater. Sol. Cells 2015, 141, 429–435. [Google Scholar] [CrossRef]
- Cattin, L.; Cherif, M.A.; El Jouad, Z.; Ftouhi, H.; El-Menyawy, E.M.; El Mahlali, A.; Touihri, S.; Arzel, L.; Addou, M.; Torchio, P.; et al. On the contribution of fullerene to the, current of planar heterojunction organic solar cells. J. Phys. D Appl. Phys. 2020, 53, 225501. [Google Scholar] [CrossRef]
- Rand, B.P.; Lian, J.; Xue, J.; Holmes, R.J.; Thompson, M.E.; Forrest, S.R. Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato) ruthenium(III) Exciton-Blocking Layers. Adv. Mater. 2005, 17, 2714–2718. [Google Scholar] [CrossRef]
- Song, Q.L.; Li, F.Y.; Yang, H.; Wu, H.R.; Wang, X.Z.; Zhou, W.; Zhao, J.M.; Ding, X.M.; Huang, C.H.; Hou, X.Y. Small-molecule organic solar cells with improved stability. Chem. Phys. Lett. 2005, 416, 42–46. [Google Scholar] [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086–4089. [Google Scholar] [CrossRef]
- Bou, A.; Torchio, P.; Vedraine, S.; Barakel, D.; Lucas, B.; Bernède, J.C.; Thoulon, P.-Y.; Ricci, M. Numerical optimization of multilayer electrodes without indium for use in organic solar cells. Sol. Energy Mater. Sol. Cells 2014, 125, 310–317. [Google Scholar] [CrossRef]
- Berredjem, Y.; Bernéde, J.C.; Ouro Djobo, S.; Cattin, L.; Morsli, M.; Boulmokh, A. On the improvement of the efficiency of organic photovoltaic cells by the presence of an ultra-thin metal layer at the interface organic/ITO. Eur. Phys. J. Appl. Phys. 2008, 44, 223–228. [Google Scholar] [CrossRef]
- Winkler, T.; Schmidt, H.; Flügge, H.; Nikolayzik, F.; Baumann, I.; Schmale, S.; Weimann, T.; Hinze, P.; Johannes, H.-H.; Rabe, T.; et al. Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes. Org. Electr. 2011, 12, 1612–1618. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, D.U.; Song, J.-H.; Yu, J.-W. Enhanced performance of semi-transparent OPV with nanoparticle reflectors. Org. Electr. 2018, 59, 314–318. [Google Scholar] [CrossRef]
- Tao, C.; Xie, G.; Liu, C.; Zhang, X.; Dong, W.; Meng, F.; Kong, X.; Shen, L.; Ruan, S.; Chen, W. Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode. Appl. Phys. Lett. 2009, 95, 053303. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Ruan, S.; Xu, Y.; Meng, F.; Wang, J.; Chen, W.; Shen, L. Semitransparent inverted polymer solar cells using MoO3/Ag/WO3 as highly transparent anodes. Sol. Energy Mater. Sol. Cells 2011, 95, 877–880. [Google Scholar] [CrossRef]
Transparent Electrode | Sheet Resistance (Ω/sq) | Maximum Transmission (%) | Figure of Merit 10−3(Ω)−1 |
---|---|---|---|
ITO | 15 | 93.5 | 34 |
MoO3/Ag/MoO3 | 5 | 90.1 | 70 |
MoO3/Ag (1 nm)/Cu:Ag (16 nm)/ZnS | 33 | 85.2 | 6.1 |
MoO3/Ag (2 nm)/Cu:Ag (15 nm)/ZnS | 29 | 83.9 | 6.0 |
Anode | Light Side | Voc | Jsc | FF | η | Rs | Rsh |
---|---|---|---|---|---|---|---|
Al/MoO3 | ITO | 0.94 | 5.60 | 57 | 3.00 | 20 | 1800 |
MoO3/Ag/MoO3 | ITO | 0.94 | 5.04 | 48 | 2.34 | 30 | 1200 |
MoO3/Ag/MoO3 | DMD | 0.92 | 3.85 | 45 | 1.61 | 35 | 1000 |
MoO3/Ag/Cu:Ag/ZnS | ITO | 0.84 | 4.77 | 40 | 1.55 | 40 | 700 |
MoO3/Ag/Cu:Ag/ZnS | DMD | 0.43 | 3.71 | 39 | 1.10 | 40 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattin, L.; Louarn, G.; Morsli, M.; Bernède, J.C. Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances. Nanomaterials 2021, 11, 393. https://doi.org/10.3390/nano11020393
Cattin L, Louarn G, Morsli M, Bernède JC. Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances. Nanomaterials. 2021; 11(2):393. https://doi.org/10.3390/nano11020393
Chicago/Turabian StyleCattin, Linda, Guy Louarn, Mustapha Morsli, and Jean Christian Bernède. 2021. "Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances" Nanomaterials 11, no. 2: 393. https://doi.org/10.3390/nano11020393