Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterial Preparation
2.2. Nanomaterial Characterization
2.3. Bacterial Suspensions
2.4. Inhbition Assay
2.4.1. Inhibition Zone Method
2.4.2. Inhibitory Rate Method
2.4.3. Long-Term Stability
2.5. Permeability Assay
2.5.1. Filter Cultivation
2.5.2. Quantification of Bacterial Cells
2.5.3. SEM Analysis of PA Filters
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nanomaterials
3.2. Inhibition Assays and Stability of Functionalized PAs
- Inhibition zone;
- Inhibitory rate.
3.2.1. Inhibition Zone Method
3.2.2. Inhibitory Rate Method
3.2.3. Long-Term Stability
3.3. Permeability Assay
3.3.1. Filtration Apparatus
3.3.2. Retention of PAs for Staphylococci Cells
3.3.3. Influence of PA Morphology and Functionalization on Their Retention
- Functionalized PAs have antibacterial properties at all of the tested concentrations of AgNO3 and CHX;
- PA 12% 10 g/m2 CHX 4.0 wt% inhibits S. aureus CCM 4516 growth completely;
- Functionalized PAs are stable for at least nine months after their production;
- PA nanomaterials are effective bacterial barriers, which can be used in many applications;
- Surface density is the crucial morphological parameter influencing PAs’ ability to retain staphylococci cells;
- The functionalization of PAs with AgNO3 or CHX does not change filtration efficiency but makes PA usage safer due to the inhibition of bacterial growth.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [Green Version]
- Hawn, M.T.; Vick, C.C.; Richman, J.; Holman, W.; Deierhoi, R.J.; Graham, L.A.; Henderson, W.G.; Itani, K.M.F. Surgical Site Infection Prevention: Time to Move Beyond the Surgical Care Improvement Program. Ann. Surg. 2011, 254. [Google Scholar] [CrossRef] [Green Version]
- Cardona, A.F.; Wilson, S.E. Skin and Soft-Tissue Infections: A Critical Review and the Role of Telavancin in Their Treatment. Clin. Infect. Dis. 2015, 61, S69–S78. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.S.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Tao, O.; Wu, D.T.; Pham, H.; Pandey, N.; Tran, S.D. Nanomaterials in Craniofacial Tissue Regeneration: A Review. Appl. Sci. 2019, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Krchova, S.; Dzan, L.; Lukas, D.; Mikes, P.; Jencova, V.; Horakova, J.; Pilarova, K. Nanofibers in skin wound healing. Česká Dermatovenerol. 2014, 4, 234–240. [Google Scholar]
- Širc, J.; Hobzová, R.; Kostina, N.; Munzarová, M.; Juklickova, M.; Lhotka, M.; Kubinová, Š.; Zajicova, A.; Michalek, J. Morphological Characterization of Nanofibers: Methods and Application in Practice. J. Nanomater. 2012, 2012, 1–14. [Google Scholar] [CrossRef]
- Lubasova, D.; Netravali, A.; Parker, J.; Ingel, B. Bacterial filtration efficiency of green soy protein based nanofiber air filter. J. Nanosci. Nanotechnol. 2014, 14, 4891–4898. [Google Scholar] [CrossRef] [PubMed]
- Lemma, S.M.; Esposito, A.; Mason, M.; Brusetti, L.; Cesco, S.; Scampicchio, M. Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. J. Food Eng. 2015, 157, 1–6. [Google Scholar] [CrossRef]
- Sato, A.; Wang, R.; Ma, H.; Hsiao, B.S.; Chu, B. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. QJM Int. J. Med. 2011, 60, 201–209. [Google Scholar] [CrossRef]
- Wang, R.; Guan, S.; Sato, A.; Wang, X.; Wang, Z.; Yang, R.; Hsiao, B.S.; Chu, B. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2013, 446, 376–382. [Google Scholar] [CrossRef]
- Ma, H.; Hsiao, B.S.; Chu, B. Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. J. Membr. Sci. 2014, 452, 446–452. [Google Scholar] [CrossRef]
- Contardi, M.; Heredia-Guerrero, J.A.; Perotto, G.; Valentini, P.; Pompa, P.P.; Spanò, R.; Goldoni, L.; Bertorelli, R.; Athanassiou, A.; Bayer, I.S. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur. J. Pharm. Sci. 2017, 104, 133–144. [Google Scholar] [CrossRef]
- Monteiro, N.; Martins, M.; Martins, A.; Fonseca, N.A.; Moreira, J.N.; Reis, R.L.; Neves, N.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 2015, 18, 196–205. [Google Scholar] [CrossRef]
- Anbazhagan, S.; Thangavelu, K.P. Application of tetracycline hydrochloride loaded-fungal chitosan and Aloe vera extract based composite sponges for wound dressing. J. Adv. Res. 2018, 14, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Anisha, B.; Biswas, R.; Chennazhi, K.; Jayakumar, R. Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol. 2013, 62, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Augustine, A.; Kalarikkal, N.; Thomas, S. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog. Biomater. 2016, 5, 223–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raguvaran, R.; Manuja, A.; Manuja, B.K.; Riyesh, T.; Singh, S.; Kesavan, M.; Dimri, U. Sodium alginate and gum acacia hydrogels of zinc oxide nanoparticles reduce hemolytic and oxidative stress inflicted by zinc oxide nanoparticles on mammalian cells. Int. J. Biol. Macromol. 2017, 101, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P. In Vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym. 2013, 95, 530–539. [Google Scholar] [CrossRef]
- Venkatasubbu, G.D.; Anusuya, T. Investigation on Curcumin nanocomposite for wound dressing. Int. J. Biol. Macromol. 2017, 98, 366–378. [Google Scholar] [CrossRef]
- Güneş, S.; Tıhmınlıoğlu, F. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int. J. Biol. Macromol. 2017, 102, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Marciello, M.; Sandri, G.; Ferrari, F.; Bonferoni, M.C.; Papetti, A.; Caramella, C.; Dacarro, C.; Grisoli, P. Wound Dressings Based on Chitosans and Hyaluronic Acid for the Release of Chlorhexidine Diacetate in Skin Ulcer Therapy. Pharm. Dev. Technol. 2007, 12, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Ambrogi, V.; Pietrella, D.; Nocchetti, M.; Casagrande, S.; Moretti, V.; De Marco, S.; Ricci, M. Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J. Colloid Interface Sci. 2017, 491, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2171–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef] [Green Version]
- Ruschulte, H.; Franke, M.; Gastmeier, P.; Zenz, S.; Mahr, K.H.; Buchholz, S.; Hertenstein, B.; Hecker, H.; Piepenbrock, S. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: A randomized controlled trial. Ann. Hematol. 2009, 88, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groppo, F.; Ramacciato, J.; Simões, R.; Flório, F.; Sartoratto, A. Antimicrobial activity of garlic, tea tree oil, and chlorhexidine against oral microorganisms. Int. Dent. J. 2002, 52, 433–437. [Google Scholar] [CrossRef]
- Ülkür, E.; Oncul, O.; Karagoz, H.; Yeniz, E.; Çelik#xF6;z, B. Comparison of silver-coated dressing (Acticoat™), chlorhexidine acetate 0.5% (Bactigrass®), and fusidic acid 2% (Fucidin®) for topical antibacterial effect in methicillin-resistant Staphylococci-contaminated, full-skin thickness rat burn wounds. Burns 2005, 31, 874–877. [Google Scholar]
- Barbour, M.E.; Maddocks, S.E.; Grady, H.J.; Roper, J.A.; Bass, M.D.; Collins, A.M.; Dommett, R.M.; Saunders, M. Chlorhexidine hexametaphosphate as a wound care material coating: Antimicrobial efficacy, toxicity and effect on healing. Nanomedicine 2016, 11, 2049–2057. [Google Scholar] [CrossRef] [Green Version]
- Vianna, M.E.; Gomes, B.P.; Berber, V.B.; Zaia, A.A.; Ferraz, C.C.R.; De Souza-Filho, F.J. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004, 97, 79–84. [Google Scholar] [CrossRef]
- Silvestre, C.; Duraccio, D.; Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782. [Google Scholar] [CrossRef]
- Guibo, Y.; Qing, Z.; Yahong, Z.; Yin, Y.; Yumin, Y. The Electrospun Polyamide 6 Nanofiber Membranes Used as High Efficiency Filter Materials: Filtration Potential, Thermal Treatment, and Their Continuous Production. J. Appl. Polym. Sci. 2013, 128, 1061–1069. [Google Scholar] [CrossRef]
- Matulevicius, J.; Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Tichonovas, M.; Baltrusaitis, J. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014, 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chong, E.J.; Phan, T.T.; Lim, I.J.; Zhang, Y.Z.; Bay, B.H.; Ramakrishna, S.; Lim, C.T. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007, 3, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Shakespeare, P.G. The role of skin substitutes in the treatment of burn injuries. Clin. Dermatol. 2005, 23, 413–418. [Google Scholar] [CrossRef]
- Lencova, S.; Svarcova, V.; Stiborova, H.; Demnerova, K.; Jencova, V.; Hozdova, K.; Zdenkova, K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces 2020, 13, 2277–2288. [Google Scholar] [CrossRef]
- Ryšánek, P.; Malý, M.; Čapková, P.; Kormunda, M.; Kolská, Z.; Gryndler, M.; Novák, O.; Hocelíková, L.; Bystrianský, L.; Munzarová, M. Antibacterial modification of nylon-6 nanofibers: Structure, properties and antibacterial activity. J. Polym. Res. 2017, 24, 208. [Google Scholar]
- De Vrieze, S.; Daels, N.; Lambert, K.; Decostere, B.; Hens, Z.; Van Hulle, S.; De Clerck, K. Filtration performance of electrospun polyamide nanofibres loaded with bactericides. Text. Res. J. 2011, 82, 37–44. [Google Scholar] [CrossRef]
- Qin, N.; Tan, X.; Jiao, Y.; Liu, L.; Zhao, W.; Yang, S.; Jia, A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2015, 4, 5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horakova, J.; Mikes, P.; Saman, A.; Jencova, V.; Klapstova, A.; Svarcova, T.; Ackermann, M.; Novotny, V.; Suchy, T.; Lukas, D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C 2018, 92, 132–142. [Google Scholar] [CrossRef]
- Daels, N.; De Vrieze, S.; Sampers, I.; Decostere, B.; Westbroek, P.; Dumoulin, A.; Dejans, P.; De Clerck, K.; Van Hulle, S. Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination 2011, 275, 285–290. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Feng, J.-W.; Zhang, C.-C.; Teng, Y.; Liu, Z.; He, J.-H. Air permeability of nanofiber membrane with hierarchical structure. Therm. Sci. 2018, 22, 1637–1643. [Google Scholar] [CrossRef]
- Matsumoto, H.; Tanioka, A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes 2011, 1, 249–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monson, L.; Braunwarth, M.; Extrand, C.W. Moisture absorption by various polyamides and their associated dimensional changes. J. Appl. Polym. Sci. 2007, 107, 355–363. [Google Scholar] [CrossRef]
- Rogalsky, S.; Bardeau, J.-F.; Wu, H.; Lyoshina, L.; Bulko, O.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Kyselov, Y.; Koo, J.H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016, 51, 7716–7730. [Google Scholar] [CrossRef]
- De Carvalho, L.; Peres, B.U.; Maezomo, H.; Shen, Y.; Haapasalo, M.; Manso, A.; Ko, F.; Carvalho, R. Chlorhexidine-containing electrospun nanofibers: Effect of production mode on chlorhexidine release. Dent. Mater. 2017, 33, e17–e18. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, M. Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym. 2008, 9, 685–690. [Google Scholar] [CrossRef]
- Lala, N.L.; Ramaseshan, R.; Bojun, L.; Sundarrajan, S.; Barhate, R.; Ying-Jun, L.; Ramakrishna, S. Fabrication of nanofibers with antimicrobial functionality used as filters: Protection against bacterial contaminants. Biotechnol. Bioeng. 2007, 97, 1357–1365. [Google Scholar] [CrossRef]
- Da Silva, M.E.R.; Danelon, M.; Souza, J.A.S.; Silva, D.F.; Pereira, J.A.; Pedrini, D.; De Camargo, E.R.; Delbem, A.C.B.; Duque, C. Incorporation of chlorhexidine and nano-sized sodium trimetaphosphate into a glass-ionomer cement: Effect on mechanical and microbiological properties and inhibition of enamel demineralization. J. Dent. 2019, 84, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.A.; Barakat, N.A.M.; Kanjwal, M.A.; Chaudhari, A.A.; Jung, I.-H.; Lee, J.H.; Kim, H.Y. Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol. Res. 2009, 17, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Shim, W.S.; Kim, J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Mater. Des. 2009, 30, 3659–3666. [Google Scholar] [CrossRef]
- Al-Attabi, R.; Dumée, L.F.; Kong, L.; Schütz, J.A.; Morsi, Y. High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Adv. Eng. Mater. 2018, 20, 1700572. [Google Scholar] [CrossRef]
- Zhao, S.; Song, X.; Bu, X.; Zhu, C.; Wang, G.; Liao, F.; Yang, S.; Wang, M. Polydopamine dots as an ultrasensitive fluorescent probe switch for Cr(VI)in vitro. J. Appl. Polym. Sci. 2017, 134, 44784. [Google Scholar] [CrossRef]
- Abrigo, M.; Kingshott, P.; McArthur, S.L. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces 2015, 7, 7644–7652. [Google Scholar] [CrossRef] [PubMed]
- Patanaik, A.; Jacobs, V.; Anandjiwala, R.D. Performance evaluation of electrospun nanofibrous membrane. J. Membr. Sci. 2010, 352, 136–142. [Google Scholar] [CrossRef]
- Yun, K.M.; Hogan, C.J.; Matsubayashi, Y.; Kawabe, M.; Iskandar, F.; Okuyama, K. Nanoparticle filtration by electrospun polymer fibers. Chem. Eng. Sci. 2007, 62, 4751–4759. [Google Scholar] [CrossRef]
- Nicosia, A.; Gieparda, W.; Foksowiczflaczyk, J.; Walentowska, J.; Wesolek, D.; Vazquez, B.; Prodi, F.; Belosi, F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 2015, 154, 154–160. [Google Scholar] [CrossRef]
- Mortimer, C.; Burke, L.; Wright, C. Microbial Interactions with Nanostructures and their Importance for the Development of Electrospun Nanofibrous Materials used in Regenerative Medicine and Filtration. J. Microb. Biochem. Technol. 2016, 8, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Tamayo-Ramos, J.A.; Rumbo, C.; Caso, F.; Rinaldi, A.; Garroni, S.; Notargiacomo, A.; Romero-Santacreu, L.; Cuesta-López, S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS Appl. Mater. Interfaces 2018, 10, 32773–32781. [Google Scholar] [CrossRef] [Green Version]
- Kurinčič, M.; Jeršek, B.; Klančnik, A.; Možina, S.S.; Fink, R.; Dražić, G.; Raspor, P.; Bohinc, K. Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential/Vpliv naravnih protimikrobnih snovi na bakterijsko hidrofobnost, adhezijo in zeta potencial. Arch. Ind. Hyg. Toxicol. 2016, 67, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material Number | Material | Antimicrobial Compound | Surface Density (g/m2) | Fiber Diameter (nm) | Air Permeability (L/m2/s) | Mean Pore Diameter (nm) |
---|---|---|---|---|---|---|
1 * | PA 8% 2 g/m2 | - | 2.4 ± 0.3 | 87.7 ± 18.8 | 11.1 ± 1.2 | 222.7 ± 28.5 |
2 * | PA 8% 5 g/m2 | - | 5.2 ± 0.5 | 87.7 ± 18.8 | 4.3 ± 0.3 | 222.7 ± 28.5 |
3 * | PA 8% 12 g/m2 | - | 12.1 ± 0.1 | 87.7 ± 18.8 | 1.7 ± 0.2 | 222.7 ± 28.5 |
4 * | PA 15% 2 g/m2 | - | 2.1 ± 0.1 | 236.2 ± 66.0 | 38.8 ± 2.1 | 477.5 ± 132.8 |
5 * | PA 15% 5 g/m2 | - | 5.3 ± 0.4 | 236.2 ± 66.0 | 16.0 ± 11.7 | 477.5 ± 132.8 |
6 * | PA 15% 11 g/m2 | - | 11.3 ± 0.7 | 236.2 ± 66.0 | 9.9 ± 3.1 | 477.5 ± 132.8 |
7 * | PA 15% 26 g/m2 | - | 26.8 ± 0.8 | 236.2 ± 66.0 | 5.8 ± 2.1 | 477.5 ± 132.8 |
8 * | PA 12% 13 g/m2 | - | 12.7 ± 0.3 | 151.7 ± 41.5 | 3.8 ± 0.1 | 395.8 ± 128.1 |
9 * | PA 12% 10 g/m2 | AgNO3 0.1 wt% | 10.6 ± 0.3 | 141.0 ± 48.1 | 3.5 ± 0.2 | 331.5 ± 149.2 |
10 * | PA 12% 10 g/m2 | AgNO3 0.3 wt% | 9.3 ± 0.3 | 139.5 ± 45.8 | 4.3 ± 0.2 | 330.0 ± 145.0 |
11 * | PA 12% 10 g/m2 | AgNO3 0.5 wt% | 9.3 ± 0.2 | 108.0 ± 23.7 | 4.6 ± 0.2 | 379.0 ± 167.6 |
12 | PA 12% 10 g/m2 | CHX 2.0 wt% | 10.0 ± 0.7 | 112.8 ± 20.2 | 3.3 ± 0.3 | 361.7 ± 177.9 |
13 | PA 12% 10 g/m2 | CHX 4.0 wt% | 9.7 ± 0.6 | 108.4 ± 21.9 | 3.4 ± 0.2 | 401.8 ± 171.4 |
Material | Inhibition Zones (mm) | Inhibitory Rate (%) | log10 Suppression (CFU/mL) | |||
---|---|---|---|---|---|---|
1st Analysis | 2nd Analysis | 1st Analysis | 2nd Analysis | 1st Analysis | 2nd Analysis | |
PA 12% 13 g/m2 | N | N | 2.0 ± 1.0 | 3.0 ± 1.4 | 0.0 ± 0.0 | 0.0 ± 0.0 |
PA 12% 10 g/m2 AgNO3 0.1 wt% | 0.0 ± 0.0 | 0.0 ± 0.0 | 99.2 ± 0.1 | 99.5 ± 0.3 | 2.2 ± 0.2 | 2.5 ± 0.4 |
PA 12% 10 g/m2 AgNO3 0.3 wt% | 0.0 ± 0.0 | 0.0 ± 0.0 | 100.0 ± 0.0 | 100.0 ± 0.0 | 8.0 ± 0.1 | 7.5 ± 0.6 |
PA 12% 10 g/m2 AgNO3 0.5 wt% | 0.0 ± 0.0 | 0.0 ± 0.0 | 100.0 ± 0.0 | 100.0 ± 0.0 | 8.7 ± 0.3 | 8.6 ± 0.4 |
PA 12% 10 g/m2 CHX 2.0 wt% | 1.8 ± 0.1 | 1.6 ± 0.2 | 100.0 ± 0.0 | 100.0 ± 0.0 | 8.9 ± 0.0 | 8.9 ± 0.0 |
PA 12% 10 g/m2 CHX 4.0 wt% | 2.9 ± 0.2 | 2.4 ± 0.3 | 100.0 ± 0.0 | 100.0 ± 0.0 | 8.9 ± 0.0 | 8.9 ± 0.0 |
p-value (α = 0.05) | 0.87 | 0.98 | 0.99 |
Material Number | Material | log10 Removal (CFU/mL) | Retention Rate (%) | Growth on BP Agar | |
---|---|---|---|---|---|
Filtration Side of PA | Bottom Side of PA | ||||
1 | PA 8% 2 g/m2 | 3.3 ± 1.6 | 96.7 ± 4.6 | + | + |
2 | PA 8% 5 g/m2 | 6.4 ± 0.5 | 100.0 ± 0.0 | + | − |
3 | PA 8% 12 g/m2 | 6.7 ± 0.0 | 100.0 ± 0.0 | + | − |
4 | PA 15% 2 g/m2 | 4.3 ± 0.3 | 100.0 ± 0.0 | + | + |
5 | PA 15% 5 g/m2 | 6.7 ± 0.0 | 100.0 ± 0.0 | + | − |
6 | PA 15% 11 g/m2 | 6.7 ± 0.0 | 100.0 ± 0.0 | + | − |
7 | PA 15% 26 g/m2 | 6.5 ± 0.2 | 100.0 ± 0.0 | + | − |
8 | PA 12% 13 g/m2 | 6.4 ± 0.2 | 100.0 ± 0.0 | + | − |
9 | PA 12% 10 g/m2 AgNO3 0.1 wt% | 6.8 ± 0.1 | 100.0 ± 0.0 | − | − |
10 | PA 12% 10 g/m2 AgNO3 0.3 wt% | 6.8 ± 0.1 | 100.0 ± 0.0 | − | − |
11 | PA 12% 10 g/m2 AgNO3 0.5 wt% | 6.8 ± 0.1 | 100.0 ± 0.0 | − | − |
12 | PA 12% 10 g/m2 CHX 2.0 wt% | 6.7 ± 0.1 | 100.0 ± 0.0 | − | − |
13 | PA 12% 10 g/m2 CHX 4.0 wt% | 6.8 ± 0.1 | 100.0 ± 0.0 | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lencova, S.; Zdenkova, K.; Jencova, V.; Demnerova, K.; Zemanova, K.; Kolackova, R.; Hozdova, K.; Stiborova, H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. Nanomaterials 2021, 11, 480. https://doi.org/10.3390/nano11020480
Lencova S, Zdenkova K, Jencova V, Demnerova K, Zemanova K, Kolackova R, Hozdova K, Stiborova H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. Nanomaterials. 2021; 11(2):480. https://doi.org/10.3390/nano11020480
Chicago/Turabian StyleLencova, Simona, Kamila Zdenkova, Vera Jencova, Katerina Demnerova, Klara Zemanova, Radka Kolackova, Kristyna Hozdova, and Hana Stiborova. 2021. "Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus" Nanomaterials 11, no. 2: 480. https://doi.org/10.3390/nano11020480
APA StyleLencova, S., Zdenkova, K., Jencova, V., Demnerova, K., Zemanova, K., Kolackova, R., Hozdova, K., & Stiborova, H. (2021). Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. Nanomaterials, 11(2), 480. https://doi.org/10.3390/nano11020480