Assessing the Carboxymethylcellulose Copper-Montmorillonite Nanocomposite for Controlling the Infection of Erwinia carotovora in Potato (Solanum tuberosum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cu2+ Exchanged MMT (Cu-MMT)
2.2. Preparation of CMC Spray-Coated Cu-MMT Nanocomposites
2.3. Characterization
2.3.1. Structural Properties
2.3.2. Antibacterial Properties
Experiment 1: Bacterial Growth Inhibition Test
Experiment 2: Potato Tuber Inoculation Test
2.3.3. Soil Release Study
3. Results and Discussion
3.1. Structural Properties
3.1.1. PXRD Characterization
3.1.2. FTIR Analysis
3.1.3. Thermal Analysis
3.1.4. Microscopy
Scanning Electron Microscopy (SEM)
Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Analysis (EDAX)
3.2. In Vitro Antibacterial Activity Against Plant Pathogenic Erwinia carotovora
3.2.1. Experiment 1: Bacterial Growth Inhibition Test
3.2.2. Experiment 2: Potato Tuber Inoculation Test
3.3. Soil Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epstein, L.; Bassein, S. Pesticide Applications of Copper on Perennial Crops in California, 1993 to 1998. J. Environ. Qual. 2001, 30, 1844–1847. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- Dias, M.C. Phytotoxicity: An Overview of the Physiological Responses of Plants Exposed to Fungicides. J. Bot. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Behlau, F.; Scandelai, L.H.M.; Junior, G.J.D.S.; Lanza, F.E. Soluble and insoluble copper formulations and metallic copper rate for control of citrus canker on sweet orange trees. Crop. Prot. 2017, 94, 185–191. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.; Allam, A.D.A.; Sallam, M.A.; Hassan, M.H.A. Role of certain potato tubers constituents in their resistance to bacterial soft rot caused by Erwinia carotovora pv. carotovora. Arch. Phytopathol. Plant Prot. 2010, 43, 1190–1197. [Google Scholar] [CrossRef]
- Snehalatharani, A.; Khan, A.N.A. Biochemical and physiological characterisation of Erwinia species causing tip-over disease of banana. Arch. Phytopathol. Plant Prot. 2010, 43, 1072–1080. [Google Scholar] [CrossRef]
- Żołobowska, L.; Pospieszny, H. Diversity of soft rot Erwinias occurring on economically important crops in Poland. Arch. Phytopathol. Plant Prot. 1999, 32, 355–364. [Google Scholar] [CrossRef]
- Van Hall, C.J.J. Bijdragen Tot de Kennis der Bakterieele Plantenzeikten, Cooperatieve Drukerij-Vereeniging “Plantijn”. Inaugural Dissertation, Amsterdam, The Netherlands, 1902. [Google Scholar]
- Dye, D.W. A taxonomic study of the genus Erwinia. n. The “carotovora” group. N. Z. J. Sci. 1969, 12, 81–97. [Google Scholar]
- Dye, D.W. A taxonomic study o.f the genus Erwinia. III. The “herbicola” group. N. Z. J. Sci. 1969, 12, 223–236. [Google Scholar]
- Dye, D.W. A taxonomic study o.fthe genus Erwinia. IV. “Atypical” Erwinias. N. Z. J. Sci. 1969, 12, 833–839. [Google Scholar]
- Jones, L.R. Bacillus carotovorus n. sp. die Ursache einer weichen Faulnis der M6hre. Cent. Bakteriol. Parasitenkd. Infekt. Krankh. 1901, 2, 12–21. [Google Scholar]
- Bergey, D.H.; Harrison, F.C.; Breed, R.S.; Hammer, B.W.; Huntoon, F.M. Bergey’s Manual of Determinative Bacteriology, 1st ed.; Williams & Wilkins Co: Baltimore, MA, USA, 1923. [Google Scholar]
- Hyman, L.; Dewasmes, V.; Toth, I.; Perombelon, M. Improved PCR detection sensitivity of Erwinia carotovora subsp. atroseptica in potato tuber peel extract by prior enrichment on a selective medium. Lett. Appl. Microbiol. 1997, 25, 143–147. [Google Scholar] [CrossRef]
- Mayakaduwa, M.A.P.; Babu, A.G.C.; Nugaliyadde, M.M.; Peter, J.; Kahawandala, K.R.S.C.B.; Nishshanka, N.I.J.H. Performance of seed tuber pieces of potato as planting material under up country wet zone conditions. Ann. Sri Lanka Dep. Agric. 2017, 19, 129–138. [Google Scholar]
- Fan, J.; He, Z.; Ma, L.Q.; Stoffella, P.J. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. J. Soils Sediments 2011, 11, 639–648. [Google Scholar] [CrossRef]
- Al-Rajab, A.J.; Hakami, O.M. Behavior of the non-selective herbicide glyphosate in agricultural soil. Am. J. Environ. Sci. 2014, 10, 94–101. [Google Scholar] [CrossRef]
- Msaky, J.J.; Tanaka, U.; Mizuta, J.; Kosaki, T. Copper levels in soils treated with fungicides under traditional agroforestry (kihamba) system in Moshi District, Tanzania. Jpn. J. Trop. Agric. 2002, 46, 230–238. [Google Scholar]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ. Pollut. 2007, 149, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wightwick, A.M.; Mollah, M.R.; Partington, D.L.; Allinson, G. Copper Fungicide Residues in Australian Vineyard Soils. J. Agric. Food Chem. 2008, 56, 2457–2464. [Google Scholar] [CrossRef]
- de Oliveira-Filho, E.C.; Lopes, R.M.; Paumgartten, F.J.R. Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 2004, 56, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, M.S.; Hu, C.H.; Xu, Z.R.; Ye, Y.; Zhou, Y.H.; Xiong, L. Effects of Copper-bearing Montmorillonite (Cu-MMT) on Escherichia coli and Diarrhea on Weanling Pigs. Asian Australas. J. Anim. Sci. 2004, 17, 1712–1716. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Rust, J.; Kingston, T.; Merrington, G.; Morris, S. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Sci. Total Environ. 2004, 329, 29–41. [Google Scholar] [CrossRef]
- Eijsackers, H.; Beneke, P.; Maboeta, M.; Louw, J.; Reinecke, A. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 2005, 62, 99–111. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Roy, A.; Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health Part B 2001, 4, 341–394. [Google Scholar] [CrossRef]
- Lepp, N.W. (Ed.) Effect of Heavy Metal Pollution on Plants: Effects of Trace Metals on Plant Function; Springer Netherlands: Dordrecht, Netherlands, 2012; 352 p. [Google Scholar] [CrossRef]
- Wanyika, H. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bruna, J.E.; Penaloza, A.; Guarda, F.; Rodriguez, F.; Galotto, M.J. Development of MtCu2+/LDPE nanocomposites with anti-microbial activity for potential use in food packaging. Appl. Clay Sci. 2012, 58, 79–87. [Google Scholar] [CrossRef]
- Malachova, K.; Praus, P.; Rybkova, Z.; Kozak, O. Antibacterial & antifungal activities of silver, copper and zinc montmorillo-nites. Appl. Clay Sci. 2011, 53, 642–645. [Google Scholar]
- Magaña, S.; Quintana, P.; Aguilar, D.; Toledo, J.; Ángeles-Chávez, C.; Cortés, M.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R.T. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. [Google Scholar] [CrossRef]
- Hu, C.-H.; Xia, M.-S. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl. Clay Sci. 2006, 31, 180–184. [Google Scholar] [CrossRef]
- Tong, G.; Yulong, M.; Peng, G.; Zirong, X. Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Veter Microbiol. 2005, 105, 113–122. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, M.; Ye, Y.; Hu, C. Antimicrobial ability of Cu-montmorillonite. Appl. Clay Sci. 2004, 27, 215–218. [Google Scholar] [CrossRef]
- Costa, C.; Conte, A.; Buonocore, G.; del Nobile, M. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int. J. Food Microbiol. 2011, 148, 164–167. [Google Scholar] [CrossRef]
- Bartolozzi, A.; Bertani, R.; Burigo, E.; Fabrizi, A.; Panozzo, F.; Quaresimin, M.; Simionato, F.; Sgarbossa, P.; Tamburini, S.; Zappalorto, M.; et al. Multifunctional Cu2+-montmorillonite/epoxy resin nanocomposites with antibacterial activity. J. Appl. Polym. Sci. 2017, 134, 44733. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Sohrabnezhad, S.; Moghaddam, M.M.; Salavatiyan, T. Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 73–78. [Google Scholar] [CrossRef]
- De, B.; Gupta, K.; Mandal, M.; Karak, N. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties. Mater. Sci. Eng. C 2015, 56, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Open Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Lam, C.-K.; Lau, K.-T.; Cheung, H.-Y.; Ling, H.-Y. Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater. Lett. 2005, 59, 1369–1372. [Google Scholar] [CrossRef]
- Bahranowski, K.; Dula, R.; Labanowska, M.; Serwicka, E.M. ESR study of Cu centers supported on AI-, Ti-, and Zr-pillared montmorillonite clays. Appl. Spectrosc. 1996, 50, 1439–1445. [Google Scholar] [CrossRef]
- Bruna, J.; Galotto, M.; Guarda, A.; Rodriguez, F. A novel polymer based on MtCu2+/cellulose acetate with antimicrobial activity. Carbohydr. Polym. 2014, 102, 317–323. [Google Scholar] [CrossRef]
- Bruna, J.E.; Quilodrán, H.; Guarda, A.; Rodríguez, F.; Galotto, M.J.; Figueroa, P. Development of antibacterial MtCu/PLA nanocomposites by casting method for potential use in food packaging. J. Chil. Chem. Soc. 2015, 60, 3009–3014. [Google Scholar] [CrossRef] [Green Version]
- Martucci, J.F.; Ruseckaite, R.A. Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocoll. 2017, 64, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhou, N.; Li, W.; Gu, H.; Fan, Y.; Yuan, J. Long-term and controlled release of chlorhexidine-copper (II) from organ-ically modified montmorillonite (OMMT) nanocomposites. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 1, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Kozák, O.; Praus, P.; Machovič, V.; Klika, Z. Adsorption of zinc and copper ions on natural and ethylenediamine modified montmorillonite. Ceram. Silikáty 2010, 54, 78–84. [Google Scholar]
- Madusanka, N.; de Silva, K.N.; Amaratunga, G. A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media. Carbohydr. Polym. 2015, 134, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Purwar, R.; Verma, A.; Batra, R. Antimicrobial gelatin/sericin/clay films for packaging of hygiene products. J. Polym. Eng. 2019, 39, 744–751. [Google Scholar] [CrossRef]
- Ismail, N.M.; Bono, A.; Valentinus, A.C.S.; Nilus, S.; Chang, L.M. Optimization of reaction conditions for preparing carbox-ymethylcellulose. J. Appl. Sci. 2010, 10, 2530–2536. [Google Scholar] [CrossRef] [Green Version]
- Blom, T.J.; Brown, W. Preplant Copper-based Compounds Reduce Erwinia Soft Rot on Calla Lilies. HortTechnology 1999, 9, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Rusjan, D. Copper in Horticulture, Fungicides for Plant and Animal Diseases; Dhanasekaran, D., Thajuddin, N., Panneerselvam, A., Eds.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R.; Pérombelon, M.C.M.; van Veen, J.A.; van der Wolf, J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wang, J.S.; Fang, Z.D. Control of potato soft rot (Erwinia carotovora subsp. carotovora (Jones) Dye) by copper sulphate and its effect on some enzymes in tubers. Acta Phytopathol. Sin. 1993, 23, 75–79. [Google Scholar]
- Gracia-Garza, J.A.; Allen, W.; Blom, T.J.; Brown, W. Pre-and post-plant applications of copper-based compounds to control Erwinia soft rot of calla lilies. Can. J. Plant Pathol. 2002, 24, 274–280. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Y.; Zhang, S.; Niu, H.; Chen, Z.; Xu, J. Enhanced sorption of radiocobalt from water by Bi (III) modified mont-morillonite: A novel adsorbent. J. Hazard. Mater. 2011, 192, 168–175. [Google Scholar]
- Gottenbos, B.; Grijpma, D.W.; van der Mei, H.C.; Feijen, J.; Busscher, H.J. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 2001, 48, 7–13. [Google Scholar] [CrossRef]
- Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46, 92–100. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Singh, A. pH-triggered release of boron and thiamethoxam from boric acid crosslinked carboxymethyl cellulose hydrogel based formulations. Polym. Plast. Technol. Mater. 2019, 58, 83–96. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Azaam, M.M.; El-Nshar, E.M. Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polym. Adv. Technol. 2018, 29, 2072–2079. [Google Scholar] [CrossRef]
- Kayalvily, T.D.; Jegathambigai, V.; Karunarathne, M.D.S.D.; Svinningen, A.; Mikunthan, G. Prevalence of Erwinia soft rot affecting cut foliage, Dracaena sanderiana ornamental industry and solution towards its management. Commun. Agric. Appl. Boil. Sci. 2012, 77, 265–273. [Google Scholar]
- Wasana, W.P.; Kuruppuarachchi, K.A.P.P.; Yapa, P.N.; Hettiarachi, S. Antimicrobial activity of selected spices against Pectobacterium carotovorum isolated from some vegetables in Sri Lanka. J. Sci. Univ. Kelaniya Sri Lanka 2019, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Boguta, P.; d’ Orazio, V.; Sokołowska, Z.; Senesi, N. Effects of selected chemical and physicochemical properties of humic acids from peat soils on their interaction mechanisms with copper ions at various pHs. J. Geochem. Explor. 2016, 168, 119–126. [Google Scholar] [CrossRef]
Weight Per Well | 20 mg | 40 mg | 60 mg |
---|---|---|---|
Composite * | Diameters of the inhibition zones (cm) | ||
C1 | 1.75 (±0.0115) | 2.40 (±0.0) | 2.50 (±0.153) |
C2 | 1.75 (±0.116) | 2.36 (±0.116) | 2.42 (±0.300) |
C3 | 1.71 (±0.010) | 2.15 (±0.0115) | 2.20 (±0.015) |
Treatments | Composite Weight Levels | ||
---|---|---|---|
20 mg | 40 mg | 60 mg | |
Composite | Mean percentage infection | ||
C1 | 0.73 (±0.168) | 1.68 (±0.191) | 0.18 (±0.267) |
C2 | 2.24 (±0.223) | 2.12 (±0.852) | 0.46 (±0.329) |
C3 | 2.46 (±0.223) | 2.26 (±0.174) | 0.56 (±0.527) |
Control | 2.51 (±0.142) | 2.51 (±0.142) | 2.51 (±0.142) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rienzie, R.; Sendanayake, L.; De Costa, D.; Hossain, A.; Brestic, M.; Skalicky, M.; Vachova, P.; Adassooriya, N.M. Assessing the Carboxymethylcellulose Copper-Montmorillonite Nanocomposite for Controlling the Infection of Erwinia carotovora in Potato (Solanum tuberosum L.). Nanomaterials 2021, 11, 802. https://doi.org/10.3390/nano11030802
Rienzie R, Sendanayake L, De Costa D, Hossain A, Brestic M, Skalicky M, Vachova P, Adassooriya NM. Assessing the Carboxymethylcellulose Copper-Montmorillonite Nanocomposite for Controlling the Infection of Erwinia carotovora in Potato (Solanum tuberosum L.). Nanomaterials. 2021; 11(3):802. https://doi.org/10.3390/nano11030802
Chicago/Turabian StyleRienzie, Ryan, Lasantha Sendanayake, Devika De Costa, Akbar Hossain, Marian Brestic, Milan Skalicky, Pavla Vachova, and Nadeesh M. Adassooriya. 2021. "Assessing the Carboxymethylcellulose Copper-Montmorillonite Nanocomposite for Controlling the Infection of Erwinia carotovora in Potato (Solanum tuberosum L.)" Nanomaterials 11, no. 3: 802. https://doi.org/10.3390/nano11030802
APA StyleRienzie, R., Sendanayake, L., De Costa, D., Hossain, A., Brestic, M., Skalicky, M., Vachova, P., & Adassooriya, N. M. (2021). Assessing the Carboxymethylcellulose Copper-Montmorillonite Nanocomposite for Controlling the Infection of Erwinia carotovora in Potato (Solanum tuberosum L.). Nanomaterials, 11(3), 802. https://doi.org/10.3390/nano11030802