Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of MnO-NPs
2.3. Characterization of MnO-NPs
2.4. Phytosafety of MnO-NP Seed Priming
2.5. Nanopriming, Seed Germination, and Seedling Development
2.6. Antioxidant Activity and Chlorophylls Measurement
2.7. Untargeted Metabolomics and Phenolic Acids Profiling
2.8. Hormone Analysis
2.9. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of MnO-NPs
3.2. Comparative Phytotoxicity of MnO-NPs, Bulk KMnO4, and Mn2O3
3.3. Effect of Different MnO-NPs Seed Priming Treatments on Seed Germination, Seedling Growth Parameters, Photosynthetic Pigments, and Antioxidant Potential
3.4. Untargeted Metabolomics to Understand the Influence of Priming with Different Concentrations of MnO-NPs on the Watermelon Leaf Metabolome
3.5. Seed Priming with MnO-NPs Altered Phytohormone Profiles Distinctly in Diploid and Triploid Watermelon Varieties
3.6. Seed Priming with Higher Concentrations of MnO-NPs Modulates Leaf Phenolic Acid Profiles in the Watermelon Plant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Cons. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.L.; Campos, E.V.R.; Bakshi, M.; Abhilash, P.; Fraceto, L.F. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol. Adv. 2014, 32, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Volova, T.; Prudnikova, S.V.; Satish, S.; Prasad, N. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ. Toxicol. Pharmacol. 2017, 53, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Jisha, K.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- de Oliveira, A.B.; Gomes-Filho, E. How are germination performance and seedling establishment under abiotic stress improved by seed priming?: A review. Aust. J. Crop Sci. 2016, 10, 1047. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef] [PubMed]
- Guha, T.; Ravikumar, K.; Mukherjee, A.; Mukherjee, A.; Kundu, R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol. Biochem. 2018, 127, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Raja, K.; Sowmya, R.; Sudhagar, R.; Moorthy, P.S.; Govindaraju, K.; Subramanian, K. Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater. Lett. 2019, 235, 164–167. [Google Scholar] [CrossRef]
- Yousefi, S.; Kartoolinejad, D.; Naghdi, R. Effects of priming with multi-walled carbon nanotubes on seed physiological characteristics of Hopbush (Dodonaea viscosa L.) under drought stress. Int. J. Environ. Stud. 2017, 74, 528–539. [Google Scholar] [CrossRef]
- Joshi, A.; Kaur, S.; Dharamvir, K.; Nayyar, H.; Verma, G. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 2018, 98, 3148–3160. [Google Scholar] [CrossRef] [PubMed]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Medina-Velo, I.A.; Cota-Ruiz, K.; Moreno-Olivas, F.; Gardea-Torresdey, J.L. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicol. Environ. Saf. 2019, 184, 109671. [Google Scholar] [CrossRef]
- Moon, S.A.; Salunke, B.K.; Alkotaini, B.; Sathiyamoorthi, E.; Kim, B.S. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictusplant extract. IET Nanobiotechnol. 2015, 9, 220–225. [Google Scholar] [CrossRef]
- Jassal, V.; Shanker, U.; Gahlot, S.; Kaith, B.; Iqubal, M.A.; Samuel, P. Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines. Appl. Phys. A 2016, 122, 271. [Google Scholar] [CrossRef]
- Kasote, D.M.; Jayaprakasha, G.; Patil, B.S. Leaf disc assays for rapid measurement of antioxidant activity. Sci. Rep. 2019, 9, 1884. [Google Scholar] [CrossRef]
- Kasote, D.M.; Lee, J.; Jayaprakasha, G.K.; Patil, B.S. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense Linked Hormones in Watermelon Seedlings. ACS Sustain. Chem. Eng. 2019, 7, 5142–5151. [Google Scholar] [CrossRef]
- Bicksler, A.J. Testing seed viability using simple germination tests. ECHO Asia Notes 2011, 11, 6. [Google Scholar]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- He, Y.; Chen, L.; Zhou, Y.; Chen, H.; Zhou, X.; Cai, F.; Huang, J.; Wang, M.; Chen, B.; Guo, Z. Analysis and model delineation of marine microalgae growth and lipid accumulation in flat-plate photobioreactor. Biochem. Eng. J. 2016, 111, 108–116. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinf. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef] [PubMed]
- Sharrouf, M.; Awad, R.; Roumié, M.; Marhaba, S. Structural, optical and room temperature magnetic study of Mn2O3 nanoparticles. Mater. Sci. Appl. 2015, 6, 850. [Google Scholar]
- Cheng, L.; Men, Y.; Wang, J.; Wang, H.; An, W.; Wang, Y.; Duan, Z.; Liu, J. Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl. Catal. B Environ. 2017, 204, 374–384. [Google Scholar] [CrossRef]
- Dai, Y.; Jiang, H.; Hu, Y.; Li, C. Hydrothermal synthesis of hollow Mn2O3 nanocones as anode material for Li-ion batteries. RSC Adv. 2013, 3, 19778–19781. [Google Scholar] [CrossRef]
- Ji, B.; Jiao, X.; Sui, N.; Duan, Y.; Chen, D. Long single-crystalline α-Mn2O3 nanowires: Facile synthesis and catalytic properties. CrystEngComm 2010, 12, 3229–3234. [Google Scholar] [CrossRef]
- Nagajyoti, P.; Lee, K.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Díaz, M.; Ivanov, A.; Mora, M.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant. Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015, 116, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Clairmont, K.B.; Hagar, W.G.; Davis, E.A. Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant. Physiol. 1986, 80, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, H.; Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water Air Soil Pollut. 2016, 227, 42. [Google Scholar] [CrossRef]
- Pradhan, S.; Patra, P.; Das, S.; Chandra, S.; Mitra, S.; Dey, K.K.; Akbar, S.; Palit, P.; Goswami, A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ. Sci. Technol. 2013, 47, 13122–13131. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Patra, P.; Mitra, S.; Dey, K.K.; Jain, S.; Sarkar, S.; Roy, S.; Palit, P.; Goswami, A. Manganese nanoparticles: Impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 2014, 62, 8777–8785. [Google Scholar] [CrossRef] [PubMed]
- Arbona, V.; Flors, V.; Jacas, J.; García-Agustín, P.; Gómez-Cadenas, A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant. Cell Physiol. 2003, 44, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, D.K.; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant. Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef]
- Ye, Y.; Cota-Ruiz, K.; Hernández-Viezcas, J.A.; Valdés, C.; Medina-Velo, I.A.; Turley, R.S.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustain. Chem. Eng. 2020, 8, 1427–1436. [Google Scholar] [CrossRef]
- Xu, H.; Vavilin, D.; Vermaas, W. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc. Natl. Acad. Sci. USA 2001, 98, 14168–14173. [Google Scholar] [CrossRef] [Green Version]
- Khalaki, M.A.; Moameri, M.; Lajayer, B.A.; Astatkie, T. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant. Growth Regul. 2020, 1–16. [Google Scholar] [CrossRef]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant. Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Tian, H.; Ghorbanpour, M.; Kariman, K. Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind. Crop. Prod. 2018, 126, 403–414. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M.; Jamil, A.; Ur-Rehman, S. Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integr. Plant. Biol. 2006, 48, 181–189. [Google Scholar] [CrossRef]
- Hazman, M.; Hause, B.; Eiche, E.; Nick, P.; Riemann, M. Increased tolerance to salt stress in OPDA-deficient rice Allene Oxide Cyclase mutants is linked to an increased ROS-scavenging activity. J. Exp. Bot. 2015, 66, 3339–3352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peleg, Z.; Blumwald, E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant. Biol. 2011, 14, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.F.; Zhou, Y.H.; Sun, Y.; Zou, L.Y.; Yu, J.Q. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environ. Exp. Bot. 2006, 56, 255–262. [Google Scholar] [CrossRef]
Genotype | Treatment | Phenolic Acid Content (mg·g−1 of Fresh Weight) | ||||
---|---|---|---|---|---|---|
4-Hydroxy-Benzoic Acid | Caffeic Acid | Phthalic Acid | Protocatechuic Acid | Trans-Cinnamic Acid | ||
Diploid | Unprimed | 1.54 ± 0.2 a | 6.52 ± 1.1 a | 8.70 ± 1.5 a | 2.46 ± 0.9 a | 42.1 ± 2.2 ab |
Hydroprimed | 2.18 ± 0.4 a | 5.08 ± 0.5 ab | 6.17 ± 0.8 a | 0.69 ± 0.1 a | 47.9 ± 5.1 ab | |
MnONPs—10 mg·L−1 | 2.05 ± 0.7 a | 3.47 ± 0.3 ab | 7.06 ± 0.7 a | 0.83 ± 0.2 a | 36.4 ± 4.6 b | |
MnONPs—20 mg·L−1 | 1.71 ± 0.2 a | 4.78 ± 0.6 ab | 5.03 ± 0.9 a | 0.52 ± 0.2 a | 44.9 ± 10.0 b | |
MnONPs—40 mg·L−1 | 2.08 ± 0.3 a | 4.96 ± 0.7 ab | 7.71 ± 1.4 a | 0.53 ± 0.2 a | 42.1 ± 6.0 ab | |
MnONPs—80 mg·L−1 | 1.71 ± 0.1 a | 2.70 ± 0.2 b | 6.98 ± 1.3 a | n.d. | 68.2 ± 12.8 a | |
Triploid | Unprimed | 1.52 ± 0.1 a | 3.57 ± 0.2 a | 6.77 ± 1.0 a | 0.72 ± 0.2 ab | 31.7 ± 5.6 b |
Hydroprimed | 1.53 ± 0.2 a | 2.83 ± 0.2 a | 10.36 ± 1.3 a | 0.55 ± 0.3 ab | 32.1 ± 3.2 b | |
MnONPs—10 mg·L−1 | 1.43 ± 0.2 a | 3.16 ± 0.3 a | 7.08 ± 0.9 a | 1.25 ± 0.2 a | 43.0 ± 14.6 b | |
MnONPs—20 mg·L−1 | 1.60 ± 0.1 a | 3.46 ± 0.5 a | 7.13 ± 1.6 a | 1.01 ± 0.3 a | 29.3 ± 3.9 b | |
MnONPs—40 mg·L−1 | 1.81 ± 0.1 a | 3.45 ± 0.3 a | 7.89 ± 0.5 a | 0.98 ± 0.2 a | 24.9 ± 7.4 b | |
MnONPs—80 mg·L−1 | 1.68 ± 0.3 a | 3.11 ± 0.6 a | 6.86 ± 1.5 a | n.d. | 90.1 ± 5.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasote, D.M.; Lee, J.H.J.; Jayaprakasha, G.K.; Patil, B.S. Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings. Nanomaterials 2021, 11, 1016. https://doi.org/10.3390/nano11041016
Kasote DM, Lee JHJ, Jayaprakasha GK, Patil BS. Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings. Nanomaterials. 2021; 11(4):1016. https://doi.org/10.3390/nano11041016
Chicago/Turabian StyleKasote, Deepak M., Jisun H. J. Lee, Guddarangavvanahally K. Jayaprakasha, and Bhimanagouda S. Patil. 2021. "Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings" Nanomaterials 11, no. 4: 1016. https://doi.org/10.3390/nano11041016
APA StyleKasote, D. M., Lee, J. H. J., Jayaprakasha, G. K., & Patil, B. S. (2021). Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings. Nanomaterials, 11(4), 1016. https://doi.org/10.3390/nano11041016