MIL-101(Cr), an Efficient Heterogeneous Catalyst for One Pot Synthesis of 2,4,5-tri Substituted Imidazoles under Solvent Free Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MIL-101
2.2. General Procedure for the Preparation of 2,4,5-Trisubstituted Imidazole Derivatives
3. Results
3.1. Characterization of MIL 101
3.2. Synthesis of 2,4,5-Trisubstituted Imidazole
3.3. Selected Data for Some Synthesized Imidazoles
3.4. Catalyst Recycling Procedure
3.5. Comparing Catalytic Activity of MIL-101 with Other Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaghi, O.M. Reticular Chemistry-Construction, Properties, and Precision Reactions of Frameworks. J. Am. Chem. Soc. 2016, 138, 15507–15509. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Bloch, E.D.; Britt, D.; Lee, C.; Doonan, C.J.; Uribe-Romo, F.J.; Furukawa, H.; Long, J.R. Metal Insertion in a Microporous Metal−organic Framework Lined with 2,2′-bipyridine. J. Am. Chem. Soc. 2010, 132, 14382–143844. [Google Scholar] [CrossRef]
- Férey, G. Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev. 2008, 37, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Smolders, S.; Jacobsen, J.; Stock, N.; De Vos, D. Selective Catalytic Reduction of NO by Cerium-based Metal–organic Frameworks. Catal. Sci. Technol. 2020, 10, 337–341. [Google Scholar] [CrossRef]
- Yu, H.; Long, D. Highly Chemiluminescent Metal-organic Framework of Type MIL-101 (Cr) for Detection of Hydrogen Peroxide and Pyrophosphate Ions. Microchim. Acta 2016, 183, 3151–3157. [Google Scholar] [CrossRef]
- Calvino-Casilda, V.; Martin-Aranda, M.R. Advances in Metal-organic Frameworks for Heterogeneous Catalysis. Recent Patents Chem. Eng. 2011, 4, 1–16. [Google Scholar] [CrossRef]
- Müller, P.; Bucior, B.; Tuci, G.; Luconi, L.; Getzschmann, J.; Kaskel, S.; Rossin, A. Computational Screening, Synthesis and Testing of Metal–organic Frameworks with a Bithiazole Linker for Carbon Dioxide Capture and Its Green Conversion into Cyclic Carbonates. Mol. Syst. Des. Eng. 2019, 4, 1000–1013. [Google Scholar] [CrossRef]
- Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal–organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. [Google Scholar] [CrossRef] [Green Version]
- Luz, I.; i Xamena, F.L.; Corma, A. Bridging Homogeneous and Heterogeneous Catalysis with MOFs: “Click” Reactions with Cu-MOF Catalysts. J. Catal. 2010, 276, 134–140. [Google Scholar] [CrossRef]
- Sabale, S.R.; Zheng, J.; Vemuri, V.R.S.; Yu, X.Y.; McGrail, B.P.; Motkuri, R.K. Recent Advances in Metal-organic Frameworks for Heterogeneous Catalyzed Organic Transformations. Synth. Catal. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Tuci, G.; Giambastiani, G.; Kwon, S.; Stair, P.C.; Snurr, R.Q.; Rossin, A. Chiral Co (II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catal. 2014, 4, 1032–1039. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, M.; Dang, J.; Huang, C.; Xu, W.; Wu, J.; Hou, H. Efficient Catalytic Performance for Acylation-Nazarov Cyclization Based on an Unusual Postsynthetic Oxidization Strategy in a Fe (II)-MOF. Inorg. Chem. 2018, 57, 10224–10231. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Metal–organic Frameworks Catalyzed C–C and C–heteroatom Coupling Reactions. Chem. Soc. Rev. 2015, 44, 1922–1947. [Google Scholar] [CrossRef]
- Roberts, J.M.; Fini, B.M.; Sarjeant, A.A.; Farha, O.K.; Hupp, J.T.; Scheidt, K.A. Urea Metal–organic Frameworks as Effective and Size-selective Hydrogen-bond Catalysts. J. Am. Chem. Soc. 2012, 134, 3334–3337. [Google Scholar] [CrossRef]
- Sachse, A.; Ameloot, R.; Coq, B.; Fajula, F.; Coasne, B.; De Vos, D.; Galarneauet, A. In situ Synthesis of Cu–BTC (HKUST-1) in Macro-/mesoporous Silica Monoliths for Continuous Flow Catalysis. Chem. Commun. 2012, 48, 4749–4751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Zhao, N.; Shu, M.; Che, S. Palladium Nanoparticles Supported on MOF-5: A Highly Active Catalyst for a Ligand-and Copper-free Sonogashira Coupling Reaction. Appl. Catal. A Gen. 2010, 388, 196–201. [Google Scholar] [CrossRef]
- Hwang, Y.; Hong, D.; Chang, J.; Jhung, S.H.; Seo, Y.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angew. Chem. 2008, 120, 4212. [Google Scholar] [CrossRef]
- Wang, J.-H.; Tang, G.-M.; Wang, Y.-T.; Cui, Y.-Z.; Wang, J.-J.; Ng, S.W. A Series of Phenyl Sulfonate Metal Coordination Polymers as Catalysts for One-pot Biginelli Reactions under Solvent-free Conditions. Dalton Trans. 2015, 44, 17829–17840. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Chen, C.; Ahn, W.-S. Chromium Terephthalate Metal–organic Framework MIL-101: Synthesis, functionalization, and Applications for Adsorption and Catalysis. RSC Adv. 2014, 4, 52500–52525. [Google Scholar] [CrossRef]
- Bromberg, L.; Diao, Y.; Wu, H.; Speakman, S.A.; Hatton, T.A. Chromium (III) Terephthalate Metal Organic Framework (MIL-101): HF-free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties. Chem. Mater. 2012, 24, 1664–1675. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sharma, P.; Kumar, N. A Review on “Imidazoles”: Their Chemistry and Pharmacological Potentials. Int. J. Pharm. Tech. Res. 2011, 3, 268–282. [Google Scholar]
- Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and Its Biological Activities: A Review. Chem. Sinica 2010, 1, 36–47. [Google Scholar]
- Cornec, A.S.; Monti, L.; Kovalevich, J.; Makani, V.; James, M.J.; Vijayendran, K.G.; Ballatore, C. Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer’s and Other Neurodegenerative Diseases. J. Med. Chem. 2017, 60, 5120–5145. [Google Scholar] [CrossRef] [Green Version]
- Gurjar, A.S.; Darekar, M.N.; Yeong, K.Y.; Ooi, L. In silico Studies, Synthesis and Pharmacological Evaluation to Explore Multi-targeted Approach for Imidazole Analogues as Potential Cholinesterase Inhibitors with Neuroprotective Role for Alzheimer’s Disease. Bioorg. Med. Chem. 2018, 2, 1511–1522. [Google Scholar] [CrossRef]
- Brodney, M.A.; Auperin, D.D.; Becker, S.L.; Bronk, B.S.; Brown, T.M.; Coffman, K.J.; Wood, K.M. Diamide Amino-imidazoles: A Novel Series of γ-secretase Inhibitors for the Treatment of Alzheimer’s Disease. Bioorg. Med. Chem. Lett. 2011, 21, 2631–2636. [Google Scholar] [CrossRef]
- Shen, M.-G.; Cai, C.; Yi, W.-B. Ytterbium Perfluorooctanesulfonate as an Efficient and Recoverable Catalyst for the Synthesis of Trisubstituted Imidazoles. J. Fluor. Chem. 2008, 12, 541–544. [Google Scholar] [CrossRef]
- Shaabani, A.; Rahmati, A.; Farhangi, E.; Badri, Z. Silica Sulfuric Acid Promoted the One-pot Synthesis of Trisubstituted Imidazoles under Conventional Heating Conditions or Using Microwave Irradiation. Catal. Commun. 2007, 8, 1149–1152. [Google Scholar] [CrossRef]
- Rostamnia, S.; Zabardasti, A. SBA-15/TFE (SBA-15/2, 2, 2-trifluoroethanol) as a Suitable and Effective Metal-free Catalyst for the Preparation of the Tri-and Tetra-substituted Imidazoles via One-pot Multicomponent Method. J. Fluor. Chem. 2012, 144, 69–72. [Google Scholar] [CrossRef]
- Maleki, B.; Sedigh, A.S. N-Bromosuccinimide Catalyzed Three Component One-pot Efficient Synthesis of 2, 4, 5-triaryl-1H-imidazoles from Aldehyde, Ammonium Acetate, and 1, 2-diketone or α-hydroxyketone. J. Mex. Chem. Soc. 2014, 58, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Jaberi, Z.; Barekat, M. One-pot Synthesis of Tri-and Tetra-substituted Imidazoles Using Sodium Dihydrogen Phosphate under Solvent-free Conditions. Chin. Chem. Lett. 2010, 21, 1183–1186. [Google Scholar] [CrossRef]
- Mirjalili, B.; Bamoniri, A.; Mirhoseini, M. Nano-SnCl4 SiO2: An Efficient Catalyst for One-pot Synthesis of 2, 4, 5-tri Substituted Imidazoles under Solvent-free Conditions. Sci. Iran 2013, 20, 587–591. [Google Scholar] [CrossRef]
- Kantevari, S.; Vuppalapati, S.V.; Biradar, D.O.; Nagarapu, L. Highly Efficient, One-pot, Solvent-free Synthesis of Tetrasubstituted Imidazoles using HClO4–SiO2 as Novel Heterogeneous Catalyst. J. Mol. Catal. A Chem. 2007, 266, 109–113. [Google Scholar] [CrossRef]
- Chary, M.V.; Keerthysri, N.C.; Vupallapati, S.V.; Lingaiah, N.; Kantevari, S. Tetrabutylammonium Bromide (TBAB) in Isopropanol: An Efficient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of 2, 4, 5-trisubstituted Imidazoles. Catal. Commun. 2008, 9, 2013–2017. [Google Scholar] [CrossRef]
- Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. Synthesis of 2, 4, 5-triaryl-imidazoles Catalyzed by NiCl2·6H2O under Heterogeneous System. J. Mol. Catal. A Chem. 2007, 263, 279–281. [Google Scholar] [CrossRef]
- Ramezanalizadeh, H.; Manteghi, F. Mixed Cobalt/nickel Metal–organic Framework, an Efficient Catalyst for One-pot Synthesis of Substituted Imidazoles. Monatshefte Chem. 2017, 14, 347–355. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Opanasenko, M.; Čejka, J.; Garcia, H. Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups. Adv. Synth. Catal. 2013, 355, 247–268. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Nguyen, C.V.; Dang, G.H.; Le, K.K.; Phan, N.T. Towards Applications of Metal–organic Frameworks in Catalysis: Friedel–Crafts Acylation Reaction over IRMOF-8 as an Efficient Heterogeneous Catalyst. J. Mol. Catal. A Chem. 2011, 349, 28–35. [Google Scholar] [CrossRef]
- Wang, J.C.; Hu, Y.H.; Chen, G.J.; Dong, Y.B. Cu (ii)/Cu (0)@ UiO-66-NH2: Base Metal@ MOFs as Heterogeneous Catalysts for Olefin Oxidation and Reduction. Chem. Commun. 2016, 52, 13116–13119. [Google Scholar] [CrossRef]
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040–2042. [Google Scholar] [CrossRef]
- Kayal, S.; Sun, B.; Chakraborty, A. Study of Metal-organic Framework MIL-101 (Cr) for Natural Gas (Methane) Storage and Compare with Other MOFs (Metal-organic Frameworks). Energy 2015, 91, 772–781. [Google Scholar] [CrossRef]
- Leng, K.; Sun, Y.; Li, X.; Sun, S.; Xu, W. Rapid Synthesis of Metal–organic Frameworks MIL-101 (Cr) without the Addition of Solvent and Hydrofluoric Acid. Cryst. Growth Des. 2016, 16, 1168–1171. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W.; Ibrahim, A.A.; El-Shall, M.S. Palladium Nanoparticles Incorporated within Sulfonic Acid-functionalized MIL-101(Cr) for Efficient Catalytic Conversion of Vanillin. J. Mater. Chem. A 2015, 3, 17008–17015. [Google Scholar] [CrossRef]
- Wang, S.; Bromberg, L.; Schreuder-Gibson, H.; Hatton, T.A. Organophophorous Ester Degradation by Chromium (III) Terephthalate Metal–organic Framework (MIL-101) Chelated to N, N-dimethylaminopyridine and Related Aminopyridines. ACS Appl. Mater. Interfaces 2013, 5, 1269–1278. [Google Scholar] [CrossRef]
- Maleki, A.; Paydar, R. Graphene oxide–chitosan Bionanocomposite: A Highly Efficient Nanocatalyst for the One-pot Three-component Synthesis of Trisubstituted Imidazoles under Solvent-free Conditions. RSC Adv. 2015, 5, 33177–33184. [Google Scholar] [CrossRef]
- Sangshetti, J.N.; Kokare, N.D.; Kotharkara, S.A.; Shinde, D.B. Ceric Ammonium Nitrate Catalysed Three Component One-pot Efficient Synthesis of 2, 4, 5-triaryl-1H-imidazoles. J. Chem. Sci. 2008, 120, 463–467. [Google Scholar] [CrossRef]
- Safari, J.; Khalili, S.D.; Banitaba, S.H. A Novel and an Efficient Catalyst for One-pot Synthesis of 2, 4, 5-trisubstituted Imidazoles by Using Microwave Irradiation under Solvent-free Conditions. J. Chem. Sci. 2010, 122, 437–441. [Google Scholar] [CrossRef]
Entry | Catalyst Weight/mg | Condition | Temperature/°C | Time/min a | Yield/% b |
---|---|---|---|---|---|
1 | _ | Solvent free | 25 | 120 | 0 |
2 | _ | Solvent free | 120 | 120 | 0 c |
3 | 20 | Solvent free | 100 | 30 | 45 |
4 | 20 | Solvent free | 120 | 10 | 68 |
5 | 10 | Solvent free | 120 | 10 | 80 |
6 | 5 | Solvent free | 120 | 10 | 95 |
7 | 2.5 | Solvent free | 120 | 10 | 92 |
8 | 5 | Ethanol, C2H5OH | reflux | 80 | 80 |
9 | 5 | Water, H2O | reflux | 80 | 35 |
Entry | Aryl | Compound | Time/min | Yield/% a | Obtained M.P./°C | Rep. M.P./°C | References | ||
---|---|---|---|---|---|---|---|---|---|
Benzil | Benzoin | Benzil | Benzoin | ||||||
1 | C6H5 | a | 10 | 15 | 95 | 92 | 270–274 | 272–274 | [46] |
2 | 4-Cl-C6H4 | b | 10 | 15 | 95 | 87 | 259–264 | 260–262 | [32] |
3 | 4-Br-C6H4 | c | 10 | 18 | 90 | 85 | 257–262 | 261–263 | [47] |
4 | 2,4-Cl2-C6H3 | d | 8 | 14 | 95 | 90 | 174–176 | 174–175 | [32] |
5 | 4-CH3-C6H4 | e | 10 | 15 | 95 | 92 | 225–230 | 228–229 | [32] |
6 | 4-CH3O-C6H4 | f | 15 | 20 | 92 | 89 | 227–228 | 228–231 | [46] |
7 | 2-Cl-C6H4 | g | 20 | 25 | 89 | 85 | 186–188 | 188 | [32] |
8 | 2-NO2-C6H4 | h | 15 | 20 | 85 | 85 | 229–232 | 230–231 | [32] |
9 | 3-NO2-C6H4 | i | 8 | 14 | 95 | 90 | 300–303 | 300 | [32] |
10 | 4-NO2-C6H4 | j | 10 | 15 | 90 | 87 | 197–199 | 194–196 | [45] |
11 | 2-OH-C6H4 | k | 20 | 15 | 87 | 85 | 201–205 | 203–205 | [47] |
12 | 4-OH-C6H4 | l | 15 | 20 | 92 | 90 | 233–234 | 227–229 | [45] |
13 | 4-(CH3)2N-C6H4 | m | 15 | 25 | 90 | 85 | 255–260 | 255–257 | [45] |
14 | 4-CN-C6H4 | n | 7 | 15 | 91 | 90 | 230–235 | 234–236 | [45] |
Entry | Compound | TON | TON | TOF/h−1 | TOF/h−1 |
---|---|---|---|---|---|
Benzil | Benzoin | Benzil | Benzoin | ||
1 | a | 28 | 27.2 | 168.67 | 108.8 |
2 | b | 31.2 | 28.6 | 188 | 114.4 |
3 | c | 33.6 | 31.8 | 202.4 | 106 |
4 | d | 34.4 | 32.6 | 258.64 | 140 |
5 | e | 29.4 | 28.4 | 177.1 | 113.6 |
6 | f | 30 | 29 | 120 | 87.87 |
7 | g | 29.4 | 28 | 89 | 67.3 |
8 | h | 28.8 | 28.8 | 115.2 | 87.27 |
9 | i | 32.2 | 30.6 | 242.1 | 131.33 |
10 | j | 30.6 | 29.6 | 184.33 | 118.4 |
11 | k | 27 | 26.4 | 81.81 | 105.6 |
12 | l | 28.6 | 28 | 114.4 | 84.84 |
13 | m | 30.2 | 28.4 | 120.8 | 68.26 |
14 | n | 29 | 28.8 | 250 | 115.2 |
Entry | Catalyst | Amount /mg | Reaction Condition | Time /min | Yield /% | TON a | TOF a /h−1 | Ref. |
---|---|---|---|---|---|---|---|---|
1 | MIL-101 | 5 | Solvent free, 120°C | 10 | 95 | 28 | 168.67 | Present work |
2 | GO | 15 | Solvent free, 120°C | 10 | 75 | 7.4 | 44.57 | [45] |
3 | Chitosan | 15 | Solvent free, 120°C | 12 | 70 | 6.9 | 34.5 | [45] |
4 | GO-Chitosan | 12 | Solvent free, 120°C | 10 | 95 | 11.7 | 70.48 | [45] |
5 | NBS | - | Solvent free, 120°C | 45 | 92 | - | - | [30] |
6 | Silica Sulfuric acid | 200 | Solvent free, 130°C | 60 | 87 | 0.61 | 0.74 | [28] |
7 | Co/Ni-MOF | 15 | Solvent free, 120°C | 10 | 95 | 8.7 | 54.38 | [36] |
8 | TBAB | 80 | Isopropanol, 82°C | 20 | 95 | 1.7 | 5.15 | [34] |
9 | Nano SnCl4·SiO2 | 30 | Solvent free, 130°C | 120 | 95 | 4.68 | 2.34 | [32] |
10 | SBA-15 | 100 | TEF, 90°C | 180 | 82 | 1.36 | 0.45 | [29] |
11 | Yb(OPf)3 | 6.7 | HOAC, C10F18, 80°C | 360 | 97 | 21.42 | 214.2 | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manteghi, F.; Zakeri, F.; Guy, O.J.; Tehrani, Z. MIL-101(Cr), an Efficient Heterogeneous Catalyst for One Pot Synthesis of 2,4,5-tri Substituted Imidazoles under Solvent Free Conditions. Nanomaterials 2021, 11, 845. https://doi.org/10.3390/nano11040845
Manteghi F, Zakeri F, Guy OJ, Tehrani Z. MIL-101(Cr), an Efficient Heterogeneous Catalyst for One Pot Synthesis of 2,4,5-tri Substituted Imidazoles under Solvent Free Conditions. Nanomaterials. 2021; 11(4):845. https://doi.org/10.3390/nano11040845
Chicago/Turabian StyleManteghi, Faranak, Fatemeh Zakeri, Owen James Guy, and Zari Tehrani. 2021. "MIL-101(Cr), an Efficient Heterogeneous Catalyst for One Pot Synthesis of 2,4,5-tri Substituted Imidazoles under Solvent Free Conditions" Nanomaterials 11, no. 4: 845. https://doi.org/10.3390/nano11040845
APA StyleManteghi, F., Zakeri, F., Guy, O. J., & Tehrani, Z. (2021). MIL-101(Cr), an Efficient Heterogeneous Catalyst for One Pot Synthesis of 2,4,5-tri Substituted Imidazoles under Solvent Free Conditions. Nanomaterials, 11(4), 845. https://doi.org/10.3390/nano11040845