Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. pH-Shifting and Ultrasonication Treatment
2.2. Production of Nanoemulsions (PPN) and PPN-Vitamin D
2.3. Particle Size and Zeta Potential Determination
2.4. Color Measurement
2.5. Foaming and Water Holding Capacity
2.6. Emulsion Capacity
2.7. Determination of Radical DPPH-Scavenging Activity (Antioxidant Activity).
2.8. Total Phenolic Compounds
2.9. Separation Using SDS-PAGE
2.10. Fortification of Food Products with Vitamin D–PPN
2.11. Viscosity in Formulations
2.12. Proximate Chemical Analysis
2.13. Protection Against UV-Light
2.14. Determination of Vitamin D Content in Food Formulations
2.15. Sensory Evaluation
2.16. Statistical Analysis
3. Results and Discussion
3.1. Studying the Characteristics of PPN
3.1.1. The Particle Size and Zeta Potential of PPN
3.1.2. Color Measurement
3.1.3. Foaming and Water Holding Capacity (WHC)
3.1.4. Emulsion Properties
3.1.5. Total Phenolic Content and Antioxidant Activity.
3.1.6. SDS-PAGE
3.2. Studying the Effect of Vitamin D/UPP and Vitamin D/PPN in Food Products
3.2.1. Color, Viscosity, and Antioxidant Activity
3.2.2. Chemical Composition
3.2.3. Stability in Food Products and Protection against UV Light
3.2.4. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biesalski, H.K. Vitamin D deficiency and co-morbidities in COVID-19 patients—A fatal relationship? NFS J. 2020, 20, 10–21. [Google Scholar] [CrossRef]
- Hossein-Nezhad, A.; Holick, M.F. Vitamin D for Health: A Global Perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [Green Version]
- Stöcklin, E.; Eggersdorfer, M. Vitamin D, an Essential Nutrient with Versatile Functions in Nearly all Organs. Int. J. Vitam. Nutr. Res. 2013, 83, 92–100. [Google Scholar] [CrossRef]
- Kristiansen, M.F.; Heimustovu, B.H.; Borg, S.Á.; Mohr, T.H.; Gislason, H.; Møller, L.F.; Christiansen, D.H.; Steig, B.Á.; Petersen, M.S.; Strøm, M.; et al. Epidemiology and Clinical Course of First Wave Coronavirus Disease Cases, Faroe Islands. Emerg. Infect. Dis. 2021, 27, 749–758. [Google Scholar] [CrossRef]
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54–56.e1. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.G.; Pai, R.R.; Sangeetha, N. Palliative care challenges and strategies for the management amid COVID-19 pandemic in India: Perspectives of palliative care nurses, cancer patients, and caregivers. Indian J. Palliat. Care 2020, 26, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Aygun, H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1157–1160. [Google Scholar] [CrossRef]
- Maurya, V.K.; Bashir, K.; Aggarwal, M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020, 196, 105489. [Google Scholar] [CrossRef]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef]
- Stilling, K. Health Benefits of Pea Protein Isolate: A Comparative Review. SURG J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef]
- Peng, W.; Kong, X.; Chen, Y.; Zhang, C.; Yang, Y.; Hua, Y. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocoll. 2016, 52, 301–310. [Google Scholar] [CrossRef]
- Sun, X.D.; Arntfield, S.D. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Res. Int. 2010, 43, 509–515. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. Fennema’s Food Chemistry; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Tamm, F.; Herbst, S.; Brodkorb, A.; Drusch, S. Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocoll. 2016, 58, 204–214. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, H.; Denon, Q.; Tavernier, I.; Gregersen, S.; Hammershøj, M.; Van Der Meeren, P.; Dewettinck, K.; Dalsgaard, T. Improved food functional properties of pea protein isolate in blends and co-precipitates with whey protein isolate. Food Hydrocoll. 2021, 113, 106556. [Google Scholar] [CrossRef]
- Felix, M.; Perez-Puyana, V.; Romero, A.; Guerrero, A. Development of thermally processed bioactive pea protein gels: Evaluation of mechanical and antioxidant properties. Food Bioprod. Process. 2017, 101, 74–83. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Felix, M.; Romero, A.; Guerrero, A. Development of pea protein-based bioplastics with antimicrobial properties. J. Sci. Food Agric. 2016, 97, 2671–2674. [Google Scholar] [CrossRef]
- Carvajal-Piñero, J.M.; Ramos, M.; Jiménez-Rosado, M.; Perez-Puyana, V.; Romero, A. Development of Pea Protein Bioplastics by a Thermomoulding Process: Effect of the Mixing Stage. J. Polym. Environ. 2019, 27, 968–978. [Google Scholar] [CrossRef]
- Jiang, S.; Yildiz, G.; Ding, J.; Andrade, J.; Rababahb, T.M.; Almajwalc, A.; Abulmeatyc, M.M.; Feng, H. Pea Protein Nanoemulsion and Nanocomplex as Carriers for Protection of Cholecalciferol (Vitamin D3). Food Bioprocess Technol. 2019, 12, 1031–1040. [Google Scholar] [CrossRef]
- Almajwal, A.M.; Abulmeaty, M.M.A.; Feng, H.; Alruwaili, N.W.; Dominguez-Uscanga, A.; Andrade, J.E.; Razak, S.; Elsadek, M.F. Stabilization of Vitamin D in Pea Protein Isolate Nanoemulsions Increases Its Bioefficacy in Rats. Nutrients 2019, 11, 75. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrason. Sonochem. 2017, 38, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Walia, N.; Chen, L. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem. 2020, 305, 125475. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, S.; Vervoort, L.; Tomic, J.; Santiago, J.S.; Lemmens, L.; Panozzo, A.; Grauwet, T.; Hendrickx, M.; Van Loey, A. Colour and carotenoid changes of pasteurised orange juice during storage. Food Chem. 2015, 171, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Alu’Datt, M.H.; Rababah, T.; Ereifej, K.; Alli, I.; Alrababah, M.A.; Almajwal, A.; Masadeh, N.; Alhamad, M.N. Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocoll. 2012, 26, 135–143. [Google Scholar] [CrossRef]
- Beuchat, L.R. Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food Chem. 1977, 25, 258–261. [Google Scholar] [CrossRef]
- Rababah, T.M.; Feng, H.; Yang, W.; Yücel, S. Fortification of Potato Chips with Natural Plant Extracts to Enhance their Sensory Properties and Storage Stability. J. Am. Oil Chem. Soc. 2012, 89, 1419–1425. [Google Scholar] [CrossRef]
- Rababah, T.M.; Ereifej, K.I.; Al-Mahasneh, M.A.; Ismaeal, K.; Hidar, A.-G.; Yang, W. Total Phenolics, Antioxidant Activities, and Anthocyanins of Different Grape Seed Cultivars Grown in Jordan. Int. J. Food Prop. 2008, 11, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Barać, M.; Čabrilo, S.; Pešić, M.; Stanojević, S.; Pavlićević, M.; Maćej, O.; Ristić, N. Functional Properties of Pea (Pisum sativum, L.) Protein Isolates Modified with Chymosin. Int. J. Mol. Sci. 2011, 12, 8372–8387. [Google Scholar] [CrossRef] [Green Version]
- Semo, E.; Kesselman, E.; Danino, D.; Livney, Y. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll. 2007, 21, 936–942. [Google Scholar] [CrossRef]
- Rababah, T.; Alu’Datt, M.; Al-Mahasneh, M.; Gammoh, S.; Mahili, H.; Ajouly, T.; Tranchant, C.C.; Bartkute-Norkuniene, V. Sensory properties of green table olives prepared by different fermentation processes. CyTA J. Food 2019, 17, 997–1005. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Herceg, Z.; Herceg, I.L. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J. Food Eng. 2008, 86, 281–287. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Li-Chan, E.C.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Murray, B.; Flynn, C.; Norton, I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll. 2016, 53, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Fan, X.; Zhou, Z.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S.; Zhu, L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem. 2013, 20, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.; Pilosof, A. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Hu, H.; Cheung, I.W.; Pan, S.; Li-Chan, E.C. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocoll. 2015, 45, 102–110. [Google Scholar] [CrossRef]
- Yanjun, S.; Jianhang, C.; Shuwen, Z.; Hongjuan, L.; Jing, L.; Lu, L.; Uluko, H.; Yanling, S.; Wenming, C.; Wupeng, G.; et al. Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. J. Food Eng. 2014, 124, 11–18. [Google Scholar] [CrossRef]
- Wu, W.; He, W.; Tan, Y.; Tian, Z.; Chen, L.; Hu, F.-Q. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: Preparation, in vitro characterization, and pharmacokinetics in rats. Int. J. Nanomed. 2011, 6, 521–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoener, A.L.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D.J. Fabrication of plant-based vitamin D3-fortified nanoemulsions: Influence of carrier oil type on vitamin bioaccessibility. Food Funct. 2019, 10, 1826–1835. [Google Scholar] [CrossRef]
- Ricaurte, L.; Perea-Flores, M.D.J.; Martinez, A.; Quintanilla-Carvajal, M.X. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov. Food Sci. Emerg. Technol. 2016, 35, 75–85. [Google Scholar] [CrossRef]
- Zayas, J.F. Foaming Properties of Proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 260–309. [Google Scholar]
- Xiong, T.; Xiong, W.; Ge, M.; Xia, J.; Li, B.; Chen, Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res. Int. 2018, 109, 260–267. [Google Scholar] [CrossRef]
- Jiao, G.; Qiu, J.; Xu, H.; He, X.; Li, X.; Zhang, N.; Liu, S. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 2015, 5, 53240–53244. [Google Scholar] [CrossRef]
- Zayas, J.F. Water Holding Capacity of Proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 76–133. [Google Scholar]
- Tomotake, H.; Shimaoka, I.; Kayashita, J.; Nakajoh, M.; Kato, N. Physicochemical and Functional Properties of Buckwheat Protein Product. J. Agric. Food Chem. 2002, 50, 2125–2129. [Google Scholar] [CrossRef]
- Zayas, J.F. Emulsifying Properties of Proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 134–227. [Google Scholar]
- McClements, D.J. Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 305–313. [Google Scholar] [CrossRef]
- Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2006, 70, R54–R66. [Google Scholar] [CrossRef]
- Dickinson, E.; Rolfe, S.E.; Dalgleish, D.G. Competitive adsorption of αs1-casein and β-casein in oil-in-water emulsions. Food Hydrocoll. 1988, 2, 397–405. [Google Scholar] [CrossRef]
- Villalva, M.; Jaime, L.; Arranz, E.; Zhao, Z.; Corredig, M.; Reglero, G.; Santoyo, S. Nanoemulsions and acidified milk gels as a strategy for improving stability and antioxidant activity of yarrow phenolic compounds after gastrointestinal digestion. Food Res. Int. 2020, 130, 108922. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Plundrich, N.; Schneider, M.; Campbell, C.; Lila, M.A. Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocoll. 2017, 72, 163–173. [Google Scholar] [CrossRef]
- McBean, G.J. Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes. Antioxidants 2017, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; Van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Mendes, A.N.; Kelber, N.; Filgueiras, L.A.; Da Costa, C.S.C.; Porto, C.P.M.; Pierucci, A.P.T.R.; Nele, M. Evaluation of surfactant activity and emulsifying of Pea protein isolate (Pisum sativum L.) obtained by the spray dryer. Matéria 2018, 23, 1–10. [Google Scholar] [CrossRef]
- Rubio, L.A.; Pérez, A.; Ruiz, R.; Guzmán, M.Á.; Aranda-Olmedo, I.; Clemente, A. Characterization of pea (Pisum sativum) seed protein fractions. J. Sci. Food Agric. 2013, 94, 280–287. [Google Scholar] [CrossRef]
- Zhu, Y.; Hsu, W.H.; Hollis, J.H. The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS ONE 2013, 8, e67482. [Google Scholar] [CrossRef] [Green Version]
- Donsì, F.; Senatore, B.; Huang, Q.; Ferrari, G. Development of Novel Pea Protein-Based Nanoemulsions for Delivery of Nutraceuticals. J. Agric. Food Chem. 2010, 58, 10653–10660. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Kumar, R.; Mehta, S. Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light. Ultrason. Sonochem. 2016, 31, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Levinson, Y.; Israeli-Lev, G.; Livney, Y.D. Soybean β-Conglycinin Nanoparticles for delivery of hydrophobic nutraceuticals. Food Biophys. 2014, 9, 332–340. [Google Scholar] [CrossRef]
- Luo, Y.; Teng, Z.; Wang, Q. Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3. J. Agric. Food Chem. 2012, 60, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Emam-Djomeh, Z.; Mousavi, M.A.E.; Davoodi, D. Stability of vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014, 143, 379–383. [Google Scholar] [CrossRef]
- Ron, N.; Zimet, P.; Bargarum, J.; Livney, Y. Beta-lactoglobulin–polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 2010, 20, 686–693. [Google Scholar] [CrossRef]
- Mahmoodani, F.; Perera, C.O.; Fedrizzi, B.; Abernethy, G.; Chen, H. Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chem. 2017, 219, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Yang, X.; Yang, L.; Liu, Z.-L.; Zhang, F. Autoxidation of isotachysterol. Tetrahedron 2004, 60, 2881–2888. [Google Scholar] [CrossRef]
- Thomas, A.; Hegde, A.; Mehta, L.K.; Virdi, M.S. Acidogenic Potential of Packaged Fruit Juices and its Effect on Plaque and Salivary pH. Int. J. Clin. Pediatr. Dent. 2019, 12, 312–317. [Google Scholar] [CrossRef] [PubMed]
Samples | L* | a* | b* | Foaming% | WHC% |
---|---|---|---|---|---|
UPP | 70.4 ± 5.1 a | −0.61 ± 0.03 a | 24.5 ± 1.7 a | 4.3 ± 0.3 b | 2.4 ± 0.17 b |
PPN | 60.5 ± 4.1 b | −0.91 ± 0.07 b | 21.9 ± 1.5 b | 6.2 ± 0.44 a | 2.7 ± 0.19 a |
Samples | Vol. of Water after 1 h (mL) | Vol. of Water after 12 h (mL) | Vol. of Water after 24 h (mL) |
---|---|---|---|
UPP | 4.7 ± 0.37 a | 4.7 ± 0.29 a | 4.6 ± 0.43 a |
PPN | 3.6 ± 0.27 b | 3.7 ± 0.31 b | 3.7 ± 0.25 b |
Treatment | Total Phenolics (mg/g) | Antioxidant Activity (%) |
---|---|---|
UPP | 77.6 ± 6.4 b | 25.4 ± 1.7 b |
PPN | 88.1 ± 5.2 a | 29.6 ± 2.1 a |
Treatment | L* | a* | b* | Viscosity (cP) | Antioxidant Activity (%) |
---|---|---|---|---|---|
Cow milk (Control) | 81.52 ± 7.1 a | −3.93 ± 0.3 a | 7.95 ± 0.4 a | 1.37 ± 0.08 a | 60.12 ± 5.3 a |
Cow milk vitamin D (VD)/UPP | 81.48 ± 6.4 a | −3.91 ± 0.2 a | 7.94 ± 0.9 a | 1.36 ± 0.14 a | 60.65 ± 4.8 a |
Cow milk VD/PPN | 81.46 ± 8 a | −3.88 ± 0.38 a | 7.97 ± 0.5 a | 1.38 ± 0.15 a | 60.73 ± 4.6 a |
Infant formula (Control) | 78.34 ± 7 a | −3.82 ± 0.07 a | 8.12 ± 0.4 a | 1.46 ± 0.16 a | 68.21 ± 6.1 a |
Infant formula VD/UPP | 78.38 ± 6.2 a | −3.80 ± 0.8 a | 8.08 ± 0.7 a | 1.45 ± 0.06 a | 68.45 ± 6.4 a |
Infant formula VD/PPN | 78.26 ± 8.6 a | −3.79 ± 0.6 a | 8.15 ± 0.5 a | 1.47 ± 0.01 a | 68.58 ± 6.7 a |
Orange juice (control) | 67.82 ± 2 a | 3.74 ± 0.3 a | 53.2 ± 3.7a | 2.14 ± 0.14 a | 24.17 ± 2.7 a |
Orange juice VD/UPP | 67.84 ± 4.7 a | 3.73 ± 0.25 a | 53.1 ± 4.2 a | 2.14 ± 0.19 a | 24.25 ± 2.8 a |
Orange juice VD/PPN | 67.81 ± 2.7 a | 3.71 ± 0.33 a | 53.2 ± 5.3 a | 2.16 ± 0.2 a | 24.31 ± 2.2 a |
Banana milk (Control) | 73.54 ± 5 a | −3.56 ± 0.42 a | 9.32 ± 0.6 a | 1.59 ± 0.2 a | 54.13 ± 4.8 a |
Banana milk VD/UPP | 73.52 ± 1.8 a | −3.55 ± 0.17 a | 9.35 ± 0.8 a | 1.58 ± 0.17 a | 54.56 ± 4.0 a |
Banana milk VD/PPN | 73.51 ± 3.6 a | −3.52 ± 0.33 a | 9.36 ± 0.6 a | 1.61 ± 0.04 a | 54.69 ± 5.1 a |
Orange juice powder (Control) | 62.61 ± 6.8 a | 6.42 ± 0.6 a | 55.7 ± 6.1 a | NA | 16.34 ± 1.5 a |
Orange juice powder VD/UPP | 62.27 ± 1.9 a | 6.46 ± 0.3 a | 55.6 ± 5.5 a | NA | 16.38 ± 1.4 a |
Orange juice powder VD/PPN | 62.55 ± 5 a | 6.47 ± 0.18 a | 55.6 ± 2.2 a | NA | 16.42 ± 1.4 a |
Treatment | Moisture | Protein | Carbohydrates | Fat | Ash |
---|---|---|---|---|---|
Cow milk (Control) | 86.81 ± 1.7 a | 3.28 ± 0.1 a | 4.38 ± 0.26 a | 3.52 ± 0.28 a | 0.64 ± 0.02 a |
Cow milk VD/UPP | 86.80 ± 6.5 a | 3.28 ± 0.15 a | 4.38 ± 0.3 a | 3.52 ± 0.24 a | 0.64 ± 0.05 a |
Cow milk VD/PPN | 86.80 ± 2.8 a | 3.29 ± 0.12 | 4.38 ± 0.17 a | 3.52 ± 0.14 a | 0.64 ± 0.03 a |
Infant formula (Control) | 85.29 ± 3.4 a | 2.30 ± 0.18 a | 9.20 ± 0.4 a | 4.50 ± 0.3 a | 0.71 ± 0.05 a |
Infant formula VD/UPP | 85.29 ± 7.5 a | 2.28 ± 0.09 a | 9.20 ± 0.5 a | 4.50 ± 0.2 a | 0.71 ± 0.03 a |
Infant formula VD/PPN | 85.28 ± 4.6 a | 2.30 ± 0.14 a | 9.20 ± 0.4 a | 4.50 ± 0.27 a | 0.71 ± 0.06 a |
Orange juice (control) | 87.33 ± 7 a | 0.62 ± 0.02 a | 9.64 ± 0.32 a | NA | 0.45 ± 0.03 a |
Orange juice VD/UPP | 87.34 ± 5 a | 0.62 ± 0.018 a | 9.63 ± 0.2 a | NA | 0.45 ± 0.02 a |
Orange juice VD/PPN | 87.35 ± 6.5 a | 0.62 ± 0.03 a | 9.64 ± 0.1 a | NA | 0.45 ± 0.03 a |
Banana milk (Control) | 83.57 ± 4.3 a | 4.21 ± 0.12 a | 11.15 ± 0.2 a | 0.25 ± 0.02 a | 0.82 ± 0.05 a |
Banana milk VD/UPP | 83.57 ± 5.2 a | 4.22 ± 0.25 a | 11.16 ± 0.6 a | 0.25 ± 0.01 a | 0.81 ± 0.05 a |
Banana milk VD/PPN | 83.56 ± 8.7 a | 4.22 ± 0.3 a | 11.15 ± 0.3 a | 0.26 ± 0.02 a | 0.83 ± 0.04 a |
Orange juice powder (Control) | 9.65 ± 0.9 a | 4.34 ± 0.3 a | 73.48 ± 5.1 a | NA | 4.15 ± 0.2 a |
Orange juice powder VD/UPP | 9.65 ± 0.5 a | 4.33 ± 0.27 a | 73.48 ± 2.8 | NA | 4.16 ± 0.25 a |
Orange juice powder VD/PPN | 9.65 ± 0.8 a | 4.34 ± 0.1 a | 73.47 ± 5.8 a | NA | 4.16 ± 0.14 a |
Treatment | UV Exposure Time (h) | |||||
---|---|---|---|---|---|---|
0 | 1 | 3 | 6 | 12 | 14 | |
Cow milk (Control) | 0.005 ± 0.001 a | 0.005 ± 0.001 a | Trace | Trace | 0 | 0 |
Cow milk VD/UPP | 0.861 ± 0.06 a | 0.642 ± 0.04 b | 0.534 ± 0.06 c | 0.432 ± 0.08 d | 0.263 ± 0.04 e | 0.145 ± 0.09 f |
Cow milk VD/PPN | 0.861 ± 0.05 a | 0.851 ± 0.08 a | 0.842 ± 0.01 a | 0.752 ± 0.02 b | 0.641 ± 0.06 c | 0.568 ± 0.06 d |
Infant formula (Control) | 0.015 ± 0.001 a | 0.013 ± 0.001 a | 0.007 ± 0.001 b | Trace | Trace | 0 |
Infant formula VD/UPP | 0.875 ± 0.06 a | 0.672 ± 0.09 b | 0.563 ± 0.01 c | 0.427 ± 0.04 d | 0.275 ± 0.01e | 0.164 ± 0.03 f |
Infant formula VD/PPN | 0.895 ± 0.09 a | 0.887 ± 0.08 a | 0.874 ± 0.04 a | 0.768 ± 0.05 b | 0.621 ± 0.01 c | 0.537 ± 0.07 d |
Orange juice (control) | Trace | 0 | 0 | 0 | 0 | 0 |
Orange juice VD/UPP | 0.860 ± 0.04 a | 0.624 ± 0.07 b | 0.486 ± 0.01 c | 0.379 ± 0.02 d | 0.253 ± 0.06 e | 0.128 ± 0.08 f |
Orange juice VD/PPN | 0.860 ± 0.08 a | 0.848 ± 0.04 a | 0.834 ± 0.06 b | 0.741 ± 0.03 c | 0.592 ± 0.04 d | 0.511 ± 0.08 e |
Banana milk (Control) | 0.005 ± 0.001 a | 0.005 ± 0.001 a | Trace | 0 | 0 | 0 |
Banana milk VD/UPP | 0.861 ± 0.07 a | 0.611 ± 0.01 b | 0.527 ± 0.02 c | 0.417 ± 0.05 d | 0.264 ± 0.06 e | 0.143 ± 0.09 f |
Banana milk VD/PPN | 0.861 ± 0.03 a | 0.851 ± 0.05 a | 0.845 ± 0.03 a | 0.732 ± 0.03 b | 0.614 ± 0.04 c | 0.527 ± 0.06 d |
Orange juice powder (Control) | Trace | 0 | 0 | 0 | 0 | 0 |
Orange juice powder VD/UPP | 0.862 ± 0.03 a | 0.642 ± 0.04 b | 0.489 ± 0.04 c | 0.384 ± 0.03 d | 0.261 ± 0.04 e | 0.138 ± 0.07 f |
Orange juice powder VD/PPN | 0.862 ± 0.04 a | 0.851 ± 0.05 a | 8.42 ± 0.0.4 b | 0.725 ± 0.01 c | 0.584 ± 0.02 d | 0.514 ± 0.03 e |
Treatment | Overall Impression | Overall Aroma | Consistency | Consistency Just about Right | Overall Color | Color Just about Right |
---|---|---|---|---|---|---|
Cow milk (Control) | 8.4 ± 0.6 a | 7.9 ± 0.5 a | 8.5 ± 0.1 a | 4.2 ± 0.1 a | 8.4 ± 0.3 a | 4.3 ± 0.2 a |
Cow milk VD/UPP | 8.3 ± 0.5 a | 7.9 ± 0.6 a | 8.5 ± 0.5 a | 4.2 ± 0.2 a | 8.4 ± 0.2 a | 4.3 ± 0.2 a |
Cow milk VD/PPN | 8.3 ± 0.3 a | 7.8 ± 0.6 a | 8.6 ± 0.4 a | 4.3 ± 0.3 a | 8.3 ± 0.4 a | 4.2 ± 0.2 a |
Infant formula (Control) | 8.6 ± 0.2 a | 8.1 ± 0.5 a | 8.3 ± 0.2 a | 4.4 ± 0.1 a | 8.4 ± 0.6 a | 4.5 ± 0.3 a |
Infant formula VD/UPP | 8.6 ± 0.5 a | 8.1 ± 0.3 a | 8.3 ± 0.6 a | 4.4 ± 0.2 a | 8.4 ± 0.7 a | 4.5 ± 0.3 a |
Infant formula VD/PPN | 8.5 ± 0.3 a | 8.1 ± 0.6 a | 8.3 ± 0.2 a | 4.3 ± 0.3 a | 8.4 ± 0.5 a | 4.5 ± 0.14 a |
Orange juice (control) | 8.2 ± 0.4 a | 8.4 ± 0.3 a | 8.1 ± 0.3 a | 4.5 ± 0.1 a | 8.5 ± 0.3 a | 4.3 ± 0.2 a |
Orange juice VD/UPP | 8.3 ± 0.6 a | 8.4 ± 0.2 a | 8.1 ± 0.5 a | 4.5 ± 0.3 a | 8.5 ± 0.4 a | 4.3 ± 0.2 a |
Orange juice VD/PPN | 8.2 ± 0.6 a | 8.4 ± 0.4 a | 8.3 ± 0.3 a | 4.6 ± 0.17 a | 8.4 ± 0.6 a | 4.2 ± 0.3 a |
Banana milk (Control) | 8.5 ± 0.5 a | 8.6 ± 0.5 a | 8.4 ± 0.2 a | 4.6 ± 0.2 a | 8.5 ± 0.3 a | 4.4 ± 0.4 a |
Banana milk VD/UPP | 8.5 ± 0.3 a | 8.6 ± 0.5 a | 8.4 ± 0.5 a | 4.6 ± 0.2 a | 8.5 ± 0.4 a | 4.4 ± 0.4 a |
Banana milk VD/PPN | 8.5 ± 0.4 a | 8.5 ± 0.4 a | 8.4 ± 0.2 a | 4.5 ± 0.3 a | 8.4 ± 0.5 a | 4.2 ± 0.3 a |
Orange juice powder (Control) | 8.3 ± 0.6 a | 8.1 ± 0.2 a | 8.2 ± 0.5 a | 4.3 ± 0.2 a | 8.2 ± 0.1 a | 4.2 ± 0.2 a |
Orange juice powder VD/UPP | 8.3 ± 0.4 a | 8.1 ± 0.2 a | 8.2 ± 0.3 a | 4.3 ± 0.1 a | 8.2 ± 0.5 a | 4.2 ± 0.3 a |
Orange juice powder VD/PPN | 8.3 ± 0.2 a | 8.1 ± 0.6 a | 8.1 ± 0.3 a | 4.3 ± 0.15 a | 8.2 ± 0.4 a | 4.2 ± 0.2 a |
Treatment | Overall Impression | Overall Aroma | Consistency | Overall Color |
---|---|---|---|---|
Cow milk (Control) | 8.2 ± 0.6 a | 7.8 ± 0.4 a | 8.3 ± 0.4 a | 8.2 ± 0.5 a |
Cow milk VD/UPP | 8.1 ± 0.2 a | 7.7 ± 0.5 a | 8.3 ± 0.5 a | 8.1 ± 0.6 a |
Cow milk VD/PPN | 8.1 ± 0.4 a | 7.6 ± 0.6 a | 8.1 ± 0.6 a | 8.1 ± 0.4 a |
Infant formula (Control) | 8.4 ± 0.7 a | 8.3 ± 0.4 a | 8.2 ± 0.4 a | 8.2 ± 0.3 a |
Infant formula VD/UPP | 8.2 ± 0.3 a | 8.3 ± 0.3 a | 8.1 ± 0.5 a | 8.1 ± 0.2 a |
Infant formula VD/PPN | 8.2 ± 0.5 a | 8.1 ± 0.4 a | 8.3 ± 0.3 a | 8.1 ± 0.6 a |
Orange juice (control) | 8.4 ± 0.5 a | 8.2 ± 0.5 a | 8.1 ± 0.2 a | 8.3 ± 0.5 a |
Orange juice VD/UPP | 8.3 ± 0.6 a | 8.1 ± 0.3 a | 8.2 ± 0.6 a | 8.1 ± 0.4 a |
Orange juice VD/PPN | 8.4 ± 0.2 a | 8.3 ± 0.6 a | 8.3 ± 0.4 a | 8.2 ± 0.4 a |
Banana milk (Control) | 8.3 ± 0.2 a | 8.2 ± 0.6 a | 8.2 ± 0.6 a | 8.1 ± 0.4 a |
Banana milk VD/UPP | 8.1 ± 0.4 a | 8.4 ± 0.4a | 8.1 ± 0.3 a | 8.3 ± 0.5 a |
Banana milk VD/PPN | 8.2 ± 0.3 a | 8.2 ± 0.2 a | 8.3 ± 0.1 a | 8.1 ± 0.2 a |
Orange juice powder (Control) | 8.2 ± 0.1 a | 8.2 ± 0.1 a | 8.2 ± 0.4 a | 8.3 ± 0.2 a |
Orange juice powder VD/UPP | 8.2 ± 0.2 a | 8.1 ± 0.5 a | 8.1 ± 0.3 a | 8.2 ± 0.1 a |
Orange juice powder VD/PPN | 8.3 ± 0.3 a | 8.1 ± 0.6 a | 8.3 ± 0.3 a | 8.4 ± 0.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkam, Y.; Rababah, T.; Costa, R.; Almajwal, A.; Feng, H.; Laborde, J.E.A.; Abulmeaty, M.M.; Razak, S. Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic. Nanomaterials 2021, 11, 887. https://doi.org/10.3390/nano11040887
Akkam Y, Rababah T, Costa R, Almajwal A, Feng H, Laborde JEA, Abulmeaty MM, Razak S. Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic. Nanomaterials. 2021; 11(4):887. https://doi.org/10.3390/nano11040887
Chicago/Turabian StyleAkkam, Yazan, Taha Rababah, Rui Costa, Ali Almajwal, Hao Feng, Juan E. Andrade Laborde, Mahmoud M. Abulmeaty, and Suhail Razak. 2021. "Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic" Nanomaterials 11, no. 4: 887. https://doi.org/10.3390/nano11040887
APA StyleAkkam, Y., Rababah, T., Costa, R., Almajwal, A., Feng, H., Laborde, J. E. A., Abulmeaty, M. M., & Razak, S. (2021). Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic. Nanomaterials, 11(4), 887. https://doi.org/10.3390/nano11040887