Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thin Film Stacks of TiN and Silica
3.2. Thin Film Stacks of Patterned-TiN Film and Silica
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F. THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266. [Google Scholar] [CrossRef]
- Xu, T.; Shi, H.; Wu, Y.; Kaplan, A.F.; Ok, J.G.; Guo, L.J. Structural Colors: From Plasmonic to Carbon Nanostructures. Small 2011, 7, 3128–3136. [Google Scholar] [CrossRef]
- Duan, X.; Kamin, S.; Liu, N. Dynamic plasmonic colour display. Nat. Commun. 2017, 8, 14606. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.T.; Kasaya, T.; Iwanaga, M.; Choi, B.; Sugimoto, Y.; Sakoda, K. Dual-band infrared metasurface thermal emitter for CO2 sensing. Appl. Phys. Lett. 2014, 105, 121107. [Google Scholar] [CrossRef]
- Matsuno, Y.; Sakurai, A. Perfect infrared absorber and emitter based on a large-area metasurface. Opt. Mater. Express 2017, 7, 618–626. [Google Scholar] [CrossRef]
- Ko, B.; Lee, D.; Badloe, T.; Rho, J. Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling. Energies 2019, 12, 89. [Google Scholar] [CrossRef]
- Lee, D.; Go, M.; Son, S.; Kim, M.; Rho, J. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 2021, 79, 105426. [Google Scholar] [CrossRef]
- Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photonics 2007, 1, 224. [Google Scholar] [CrossRef]
- Lindquist, N.C.; Luhman, W.A.; Oh, S.H.; Holmes, R.J. Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 2008, 93, 123308. [Google Scholar] [CrossRef]
- Wu, C.; Shvets, G. Design of metamaterial surfaces with broadband absorbance. Opt. Lett. 2012, 37, 308. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, R.J.; Wang, S.Y.; Lu, M.; Chen, X.; Zheng, Y.X.; Chen, L.Y.; Ye, Z.; Wang, C.Z.; Ho, K.M. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep. 2015, 5, 7810. [Google Scholar] [CrossRef]
- Shi, H.; Ok, J.G.; Baac, H.W.; Guo, L.J. Low density carbon nanotube forest as an index-matched and near perfect absorption coating. Appl. Phys. Lett. 2011, 99, 211103. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, J.; Cheng, Q.; Xia, S.; Qu, S. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 2017, 110, 104103. [Google Scholar] [CrossRef]
- Huang, L.; Chen, C.; Li, Z.; Zhang, Y.; Zhang, H.; Lu, J.; Ruan, S.; Zeng, Y. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 2020, 31, 162001. [Google Scholar] [CrossRef] [PubMed]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2017, 2, 517. [Google Scholar] [CrossRef] [PubMed]
- Ra’Di, Y.; Simovski, C.R.; Tretyakov, S.A. Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations. Phys. Rev. Appl. 2015, 3, 037001. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP181. [Google Scholar] [CrossRef]
- Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yi, Y. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
- Kim, I.; Thus, S.; Rana, A.S.; Mehmood, M.Q.; Rho, J. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics 2018, 7, 1827–1833. [Google Scholar] [CrossRef]
- Toyoda, H.; Kimino, K.; Kawano, A.; Takahara, J. Incandescent Light Bulbs Based on a Refractory Metasurface. Photonics 2019, 6, 105. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.; Huo, P.; Wang, D.; Tan, J.; Xu, T. Large-scale broadband absorber based on metallic tungsten nanocone structure. Appl. Phys. Lett. 2017, 111, 251102. [Google Scholar] [CrossRef]
- Rana, A.S.; Mehmood, M.Q.; Jeong, H.; Kim, I.; Rho, J. Tungsten-based Ultrathin Absorber for Visible Regime. Sci. Rep. 2018, 8, 2443. [Google Scholar] [CrossRef]
- Naik, G.V.; Schroeder, J.L.; Ni, X.; Kildishev, A.V.; Sands, T.D.; Boltasseva, A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2, 478–489. [Google Scholar] [CrossRef]
- Boltasseva, A. Empowering plasmonics and metamaterials technology with new material platforms. MRS Bull. 2014, 39, 461–468. [Google Scholar] [CrossRef]
- Huo, D.; Zhang, J.; Wang, H.; Ren, X.; Wang, C.; Su, H.; Zhao, H. Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array. Nanoscale Res. Lett. 2017, 12, 465. [Google Scholar] [CrossRef]
- Huo, D.; Zhang, J.; Wang, Y.; Wang, C.; Su, H.; Zhao, H. Broadband Perfect Absorber Based on TiN Nanocone Metasurface. Nanomaterials 2018, 8, 485. [Google Scholar] [CrossRef]
- Huo, D.; Su, H.; Wang, C.; Ma, X.; Zhao, H. Enhanced absorption based on gap-plasmon resonance and Fabry–Perot resonance in a refractory metasurface. J. Opt. Soc. Am. B 2021, 38, 1350–1358. [Google Scholar] [CrossRef]
- Li, W.; Guler, U.; Kinsey, N.; Naik, G.V.; Boltasseva, A.; Guan, J.; Shalaev, V.M.; Kildishev, A.V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, S.; Rezaei, M.H.; Zarifkar, A. Ultra-Broadband Metamaterial Absorber based on Cross-Shaped TiN Resonators. J. Opt. Soc. Am. A 2020, 37, 697–704. [Google Scholar] [CrossRef]
- Wang, Y.; Capretti, A.; Dal Negro, L. Wide tuning of the optical and structural properties of alternative plasmonic materials. Opt. Mater. Express 2015, 5, 2415–2430. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solid II; Boston Academic Press Boston Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Prayakarao, S.; Robbins, S.; Kinsey, N.; Boltasseva, A.; Shalaev, V.M.; Wiesner, U.B.; Bonner, C.E.; Hussain, R.; Noginova, N.; Noginov, M.A. Gyroidal titanium nitride as nonmetallic metamaterial. Opt. Mater. Express 2015, 5, 1316. [Google Scholar] [CrossRef]
- Braic, L.; Vasilantonakis, N.; Mihai, A.; Villar-Garcia, I.J.; Fearn, S.; Zou, B.; Alford, N.M.; Doiron, B.; Oulton, R.F.; Maier, S.A.A. Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications. ACS Appl. Mater. Interfaces 2017, 9, 29857. [Google Scholar] [CrossRef] [PubMed]
- Berthod, L.; Gâté, V.; Bichotte, M.; Langlet, M.; Vocanson, F.; Jimenez, C.; Jamon, D.; Verrier, I.; Veillas, C.; Parriaux, O.; et al. Direct fabrication of a metal-like TiN-based plasmonic grating using nitridation of a photo-patternable TiO2 sol-gel film. Opt. Mater. Express 2016, 6, 2508–2520. [Google Scholar] [CrossRef]
- Guler, U.; Zemlyanov, D.; Kim, J.; Wang, Z.; Chandrasekar, R.; Meng, X.; Stach, E.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 1600717. [Google Scholar] [CrossRef]
- Rebenne, H.E.; Bhat, D.G. Review of CVD TiN coatings for wear-resistant applications: Deposition processes, properties and performance. Surf. Coatings Technol. 1994, 63, 1–13. [Google Scholar] [CrossRef]
- Yu, I.S.; Cheng, H.E.; Chang, C.C.; Lin, Y.W.; Chen, H.T.; Wang, Y.C.; Yang, Z.P. Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films. Opt. Mater. Express 2017, 7, 777–784. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Deng, H.X.; Li, Z.G.; Stan, L.; Rosenmann, D.; Czaplewski, D.; Gao, J.; Yang, X.D. Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 2015, 40, 2592–2595. [Google Scholar] [CrossRef]
- Wu, S.W.; Luo, T.F.; Xiong, G.P. Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures. Plasmonics 2021, 1–11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, D.; Ma, X.; Su, H.; Wang, C.; Zhao, H. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface. Nanomaterials 2021, 11, 1092. https://doi.org/10.3390/nano11051092
Huo D, Ma X, Su H, Wang C, Zhao H. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface. Nanomaterials. 2021; 11(5):1092. https://doi.org/10.3390/nano11051092
Chicago/Turabian StyleHuo, Dewang, Xinyan Ma, Hang Su, Chao Wang, and Hua Zhao. 2021. "Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface" Nanomaterials 11, no. 5: 1092. https://doi.org/10.3390/nano11051092
APA StyleHuo, D., Ma, X., Su, H., Wang, C., & Zhao, H. (2021). Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface. Nanomaterials, 11(5), 1092. https://doi.org/10.3390/nano11051092