Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gisin, N.; Thew, R. Quantum communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Sangouard, N.; Simon, C.; Minář, J.; Zbinden, H.; De Riedmatten, H.; Gisin, N. Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 2007, 76, 050301. [Google Scholar] [CrossRef] [Green Version]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 2004, 306, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, G.B.; Borish, V.; Cole, G.D.; Ramelow, S.; Lapkiewicz, R.; Zeilinger, A. Quantum imaging with undetected photons. Nature 2014, 512, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michler, P. Quantum Dots for Quantum Information Technologies; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Lee, K.G.; Chen, X.W.; Eghlidi, H.; Kukura, P.; Lettow, R.; Renn, A.; Sandoghdar, V.; Götzinger, S. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photonics 2011, 5, 166–169. [Google Scholar] [CrossRef]
- Chen, X.-W.; Götzinger, S.; Sandoghdar, V. 99% efficiency in collecting photons from a single emitter. Opt. Lett. 2011, 36, 3545–3547. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; He, Y.; Duan, Z.C.; Gregersen, N.; Chen, M.C.; Unsleber, S.; Maier, S.; Schneider, C.; Kamp, M.; Höfling, S. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 2016, 116, 020401. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 2007, 450, 862. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.H.; Chen, W.Y.; Chang, H.S.; Hsieh, T.P.; Chyi, J.I.; Hsu, T.M. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 2006, 96, 117401. [Google Scholar] [CrossRef]
- Claudon, J.; Bleuse, J.; Singh, N.; Maela, M.; Périne, B. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 2010, 4, 174–177. [Google Scholar] [CrossRef]
- Li, L.; Chen, E.H.; Zheng, J.; Mouradian, S.L.; Dolde, F.; Schröder, T.; Karaveli, S.; Markham, M.L.; Twitchen, D.J.; Englund, D. Efficient Photon Collection from a Nitrogen Vacancy Center in a Circular Bullseye Grating. Nano Lett. 2015, 15, 1493–1497. [Google Scholar] [CrossRef] [Green Version]
- Davango, M.; Rakher, M.T.; Schuh, D.; Badolato, A.; Srinivasan, K. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl. Phys. Lett. 2011, 99, 215. [Google Scholar]
- Sapienza, L.; Marcelo Davanço, A.B.; Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 2015, 6, 7833. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, H.; Chung, T.H.; Qin, J.; Yang, X.; Li, J.P.; Liu, R.Z.; Zhong, H.S.; He, Y.M.; Ding, X. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 2019, 122, 113602.1–113602.6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trojak, O.J.; Park, S.I.; Song, J.D.; Sapienza, L. Metallic nanorings for broadband, enhanced extraction of light from solid-state emitters. Appl. Phys. Lett. 2017, 111, 1650. [Google Scholar] [CrossRef] [Green Version]
- Munsch, M.; Malik, N.S.; Dupuy, E.; Delga, A.; Bleuse, J.; Gerard, J.M.; Claudon, J.; Gregersen, N.; Mørk, J. Dielectric GaAs Antenna Ensuring an Efficient Broadband Coupling between an InAs Quantum Dot and a Gaussian Optical Beam. Phys. Rev. Lett. 2013, 110, 177402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gschrey, M.; Thoma, A.; Schnauber, P.; Seifried, M.; Schmidt, R.; Wohlfeil, B.; Krüger, L.; Schulze, J.H.; Heindel, T.; Burger, S.; et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 2015, 6, 7662. [Google Scholar] [CrossRef] [PubMed]
- Heindel, T.; Thoma, A.; von Helversen, M.; Schmidt, M.; Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.H.; Strittmatter, A.; Beyer, J.; et al. A bright triggered twin-photon source in the solid state. Nat. Commun. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Marc, S.; Lena, E.; Sascha, K.; Fabian, O.; Cornelius, N.; Stefan, H.; Michael, J.; Peter, M.; Luca, P.S. Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Appl. Phys. Lett. 2018, 113, 032103. [Google Scholar]
- Sartison, M.; Portalupi, S.L.; Gissibl, T.; Jetter, M.; Giessen, H.; Michler, P. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Sci. Rep. 2017, 7, 39916. [Google Scholar] [CrossRef] [PubMed]
- Fischbach, S.; Schlehahn, A.; Thoma, A.; Srocka, N.; Gissibl, T.; Ristok, S.; Thiele, S.; Kaganskiy, A.; Strittmatter, A.; Heindel, T.; et al. Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source. ACS Photonics 2017, 4, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaganskiy, A.; Fischbach, S.; Strittmatter, A.; Rodt, S.; Heindel, T.; Reitzenstein, S. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt. Commun. 2018, 413, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Dousse, A.; Suffczyński, J.; Beveratos, A.; Krebs, O.; Lemaître, A.; Sagnes, I.; Bloch, J.; Voisin, P.; Senellart, P. Ultrabright source of entangled photon pairs. Nature 2010, 466, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.L.; Lee, Y.C.; Yang, S.P.; Lee, P.S.; Chang, J.Y. Azimuthally isotropic irradiance of GaN-based light-emitting diodes with GaN microlens arrays. Opt. Express 2009, 17, 6148–6155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Song, R.; Ee, Y.K.; Kumnorkaew, P.; Gilchrist, J.F.; Tansu, N. Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect Ratios. IEEE Photonics J. 2011, 3, 489–499. [Google Scholar]
- Soibel, A.; Keo, S.A.; Fisher, A.; Hill, C.J.; Luong, E.; Ting, D.Z.; Gunapala, S.D.; Lubyshev, D.; Qiu, Y.; Fastenau, J.M.; et al. High operating temperature nBn detector with monolithically integrated microlens. Appl. Phys. Lett. 2018, 112, 041105. [Google Scholar] [CrossRef]
- Li, M.F.; Yu, Y.; He, J.F.; Wang, L.; Zhu, Y.; Shang, X.; Ni, H.; Niu, Z. In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots. Nanoscale Res. Lett. 2013, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.J.; Xu, J.X.; Ma, B.; Chen, Z.S.; Wei, S.H.; Li, M.F.; Zha, G.W.; Zhang, L.C.; Yu, Y.; Ni, H.Q.A. Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots. Chin. Phys. B 2016, 25, 452–458. [Google Scholar] [CrossRef]
- Chen, Z.S.; Ma, B.; Shang, X.J.; He, Y.; Zhang, L.C.; Ni, H.Q.; Wang, J.L.; Niu, Z.C. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Nanoscale Res. Lett. 2016, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Ma, B.; Ni, H.; Chen, Z.; Li, S.; Chen, Y.; He, X.; Su, X.; Shi, Y.; Niu, Z. C2v and D3h symmetric InAs quantum dots on GaAs (001) substrate: Exciton emission and a defect field influence. AIP Adv. 2020, 10, 085126. [Google Scholar] [CrossRef]
- Ulrich, S.; Gies, C.; Ateş, S.; Wiersig, J.; Reitzenstein, S.; Hofmann, C.; Löffler, A.; Forchel, A.; Jahnke, F.; Michler, P. Photon Statistics of Semiconductor Microcavity Lasers. Phys. Rev. Lett. 2007, 98, 043906. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Shirane, M.; Ota, Y.; Nomura, M.; Kumagai, N.; Ohkouchi, S.; Kirihara, A.; Ishida, S.; Iwamoto, S.; Yorozu, S.; et al. Spin dynamics of excited trion states in a single InAs quantum dot. Phys. Rev. B 2010, 81, 245304. [Google Scholar] [CrossRef]
- Wu, X.F.; Dou, X.M.; Ding, K.; Zhou, P.Y.; Ni, H.Q.; Niu, Z.C.; Zhu, H.J.; Jiang, D.S.; Zhao, C.L.; Sun, B.Q. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission. Chin. Phys. Lett. 2015, 32, 124204. [Google Scholar] [CrossRef] [Green Version]
ML Shape | Mask Diameter | Etching Time | H | W | FWHM |
---|---|---|---|---|---|
1.9 m | 90 min | 0.59 m | 0.05 m | 0.59 m | |
2.2 m | 90 min | 0.53 m | 0.08 m | 0.61 m | |
2.5 m | 90 min | 0.68 m | 0.01 m | 1.04 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shang, X.; Chen, Y.; Su, X.; Hao, H.; Liu, H.; Zhang, Y.; Ni, H.; Niu, Z. Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction. Nanomaterials 2021, 11, 1136. https://doi.org/10.3390/nano11051136
Li S, Shang X, Chen Y, Su X, Hao H, Liu H, Zhang Y, Ni H, Niu Z. Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction. Nanomaterials. 2021; 11(5):1136. https://doi.org/10.3390/nano11051136
Chicago/Turabian StyleLi, Shulun, Xiangjun Shang, Yao Chen, Xiangbin Su, Huiming Hao, Hanqing Liu, Yu Zhang, Haiqiao Ni, and Zhichuan Niu. 2021. "Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction" Nanomaterials 11, no. 5: 1136. https://doi.org/10.3390/nano11051136
APA StyleLi, S., Shang, X., Chen, Y., Su, X., Hao, H., Liu, H., Zhang, Y., Ni, H., & Niu, Z. (2021). Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction. Nanomaterials, 11(5), 1136. https://doi.org/10.3390/nano11051136