Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Preparation and Characterization
2.2. Dielectric Response Analysis
2.3. Applications
3. Materials and Methods
3.1. Materials
3.2. Raman Characterization
3.3. XPS Characterization
3.4. Atomic Force Microscopy, Optical Visualization, Scanning Electron Microscopy
3.5. Ellipsometry Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
λ (nm) | Substrate | |||||
---|---|---|---|---|---|---|
SiO2/Si | Quartz | Glass | ||||
n | k | n | k | n | k | |
240 | 1.5018 | 2.3036 | 1.4913 | 2.3303 | 1.5033 | 2.2261 |
260 | 2.1096 | 2.4266 | 2.1676 | 2.5087 | 2.0678 | 2.3145 |
280 | 2.6262 | 2.1543 | 2.7044 | 2.1765 | 2.5344 | 2.1402 |
300 | 2.866 | 1.7567 | 2.9296 | 1.7667 | 2.7947 | 1.8313 |
320 | 2.8629 | 1.496 | 2.9093 | 1.5577 | 2.8391 | 1.5565 |
340 | 2.8004 | 1.3584 | 2.8452 | 1.4296 | 2.7962 | 1.389 |
360 | 2.7408 | 1.2902 | 2.7901 | 1.3557 | 2.7397 | 1.3133 |
380 | 2.6956 | 1.2595 | 2.7539 | 1.3209 | 2.6909 | 1.2874 |
400 | 2.6637 | 1.2498 | 2.7338 | 1.3126 | 2.6531 | 1.2834 |
420 | 2.6426 | 1.2529 | 2.7222 | 1.3219 | 2.6255 | 1.2907 |
440 | 2.6298 | 1.2639 | 2.7167 | 1.343 | 2.6063 | 1.3044 |
460 | 2.6234 | 1.28 | 2.7158 | 1.3683 | 2.5938 | 1.3216 |
480 | 2.6221 | 1.2997 | 2.7182 | 1.3905 | 2.5864 | 1.3408 |
500 | 2.6247 | 1.3216 | 2.7232 | 1.4125 | 2.5838 | 1.3609 |
520 | 2.6305 | 1.3451 | 2.7301 | 1.4345 | 2.5849 | 1.3815 |
540 | 2.6389 | 1.3697 | 2.7386 | 1.4565 | 2.5888 | 1.4022 |
560 | 2.6493 | 1.395 | 2.7483 | 1.4785 | 2.5952 | 1.4228 |
580 | 2.6614 | 1.4207 | 2.7591 | 1.5006 | 2.6044 | 1.4433 |
600 | 2.6749 | 1.4465 | 2.7708 | 1.5226 | 2.6167 | 1.4635 |
620 | 2.6894 | 1.4725 | 2.7832 | 1.5446 | 2.6316 | 1.4836 |
640 | 2.7049 | 1.4984 | 2.7962 | 1.5666 | 2.6485 | 1.5035 |
660 | 2.721 | 1.5243 | 2.8098 | 1.5886 | 2.6663 | 1.5233 |
680 | 2.7376 | 1.55 | 2.8238 | 1.6107 | 2.6843 | 1.5429 |
700 | 2.7546 | 1.5756 | 2.8382 | 1.6327 | 2.7021 | 1.5624 |
720 | 2.7719 | 1.5976 | 2.8529 | 1.6547 | 2.7196 | 1.5819 |
740 | 2.7893 | 1.6196 | 2.868 | 1.6767 | 2.7372 | 1.6013 |
760 | 2.8067 | 1.6416 | 2.8834 | 1.6988 | 2.7547 | 1.6206 |
780 | 2.824 | 1.6637 | 2.899 | 1.7208 | 2.7723 | 1.64 |
800 | 2.8411 | 1.6857 | 2.9148 | 1.7428 | 2.7898 | 1.6593 |
820 | 2.8576 | 1.7077 | 2.9307 | 1.7648 | 2.8074 | 1.6786 |
840 | 2.8754 | 1.7297 | 2.9469 | 1.7868 | 2.825 | 1.698 |
860 | 2.8933 | 1.7518 | 2.9632 | 1.8089 | 2.8425 | 1.7174 |
880 | 2.9115 | 1.7738 | 2.9796 | 1.8309 | 2.8601 | 1.7368 |
900 | 2.9298 | 1.7958 | 2.9962 | 1.8529 | 2.8776 | 1.7563 |
920 | 2.9483 | 1.8178 | 3.0128 | 1.8749 | 2.8952 | 1.7758 |
940 | 2.9669 | 1.8398 | 3.0296 | 1.897 | 2.9128 | 1.7953 |
960 | 2.9856 | 1.8619 | 3.0464 | 1.919 | 2.9303 | 1.8151 |
980 | 3.0044 | 1.8839 | 3.0633 | 1.9412 | 2.9479 | 1.8356 |
1000 | 3.0233 | 1.9059 | 3.0803 | 1.9623 | 2.9655 | 1.8571 |
References
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Bao, Q.; Loh, K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [Green Version]
- Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Luongo, G.; Di Bartolomeo, A.; Giubileo, F.; Chavarin, C.A.; Wenger, C. Electronic properties of graphene/p-silicon Schottky junction. J. Phys. D Appl. Phys. 2018, 51, 255305. [Google Scholar] [CrossRef]
- Luongo, G.; Grillo, A.; Giubileo, F.; Iemmo, L.; Lukosius, M.; Alvarado Chavarin, C.; Wenger, C.; Di Bartolomeo, A. Graphene Schottky junction on pillar patterned silicon substrate. Nanomaterials 2018, 9, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical mod-ulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.L.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- Stebunov, Y.V.; Aftenieva, O.A.; Arsenin, A.V.; Volkov, V.S. Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl. Mater. Interfaces 2015, 7, 21727–21734. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D. Graphene-on-silicon schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Gluba, M.A.; Albrecht, S.; Rappich, J.; Korte, L.; Rech, B.; Nickel, N.H. Perovskite solar cells with large-area cvd-graphene for tandem solar cells. J. Phys. Chem. Lett. 2015, 6, 2745–2750. [Google Scholar] [CrossRef] [Green Version]
- Ermolaev, G.A.; Stebunov, Y.V.; Vyshnevyy, A.A.; Tatarkin, D.E.; Yakubovsky, D.I.; Novikov, S.M.; Baranov, D.G.; Shegai, T.; Nikitin, A.Y.; Arsenin, A.V.; et al. Broadband optical properties of monolayer and bulk MoS2. NPJ 2D Mater. Appl. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Yakubovsky, D.I.; Stebunov, Y.V.; Arsenin, A.V.; Volkov, V.S. Spectral ellipsometry of monolayer transition metal dichalcogenides: Analysis of excitonic peaks in dispersion. J. Vac. Sci. Technol. B 2020, 38, 014002. [Google Scholar] [CrossRef]
- Kravets, V.G.; Grigorenko, A.N.; Nair, R.R.; Blake, P.; Anissimova, S.; Novoselov, K.S.; Geim, A.K. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 2010, 81, 155413. [Google Scholar] [CrossRef] [Green Version]
- Matković, A.; Ralević, U.; Chhikara, M.; JakovljeviĆ, M.M.; Jovanović, D.; Bratina, G.; Gajić, R. Influence of transfer residue on the optical properties of chemical vapor deposited graphene investigated through spectroscopic ellipsometry. J. Appl. Phys. 2013, 114, 093505. [Google Scholar] [CrossRef]
- Wurstbauer, U.; Röling, C.; Wurstbauer, U.; Wegscheider, W.; Vaupel, M.; Thiesen, P.H.; Weiss, D. Imaging ellipsometry of graphene. Appl. Phys. Lett. 2010, 97, 231901. [Google Scholar] [CrossRef] [Green Version]
- Matković, A.; Beltaos, A.; Milićević, M.; Ralević, U.; Vasić, B.; Jovanović, D.; Gajić, R. Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene. J. Appl. Phys. 2012, 112, 123523. [Google Scholar] [CrossRef]
- Weber, J.J.-W.; Calado, V.E.; Van De Sanden, M.R. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97, 091904. [Google Scholar] [CrossRef]
- Nelson, F.; Sandin, A.; Dougherty, D.B.; Aspnes, D.E.; Rowe, J.E.; Diebold, A.C. Optical and structural characterization of epitaxial graphene on vicinal 6H-SiC(0001)–Si by spectroscopic ellipsometry, Auger spectroscopy, and STM. J. Vac. Sci. Technol. B 2012, 30, 04E106. [Google Scholar] [CrossRef]
- Boosalis, A.; Hofmann, T.; Darakchieva, V.; Yakimova, R.; Schubert, M. Visible to vacuum ultraviolet dielectric functions of epitaxial graphene on 3C and 4H SiC polytypes determined by spectroscopic ellipsometry. Appl. Phys. Lett. 2012, 101, 011912. [Google Scholar] [CrossRef] [Green Version]
- Darakchieva, V.; Boosalis, A.; Zakharov, A.A.; Hofmann, T.; Schubert, M.; Tiwald, T.E.; Iakimov, T.; Vasiliauskas, R.; Ya-kimova, R. Large-area microfocal spectroscopic ellipsometry mapping of thickness and electronic properties of epitaxial graphene on Si- and C-face of 3C-SiC(111). Appl. Phys. Lett. 2013, 102, 213116. [Google Scholar] [CrossRef] [Green Version]
- Nelson, F.J.; Kamineni, V.K.; Zhang, T.; Comfort, E.S.; Lee, J.U.; Diebold, A.C. Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97, 253110. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Liu, C.-H.; Liu, C.-H.; Zhong, Z.; Norris, T.B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 2014, 104, 261909. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Martínez, E.; Gabás, M.; Barrutia, L.; Pesquera, A.; Centeno, A.; Palanco, S.; Zurutuza, A.; Algora, C. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene. Nanoscale 2015, 7, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Hight Walker, A.R.; Gundlach, D.J.; Nguyen, N.V. Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon 2016, 99, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Gu, H.; Zhu, S.; Jiang, H.; Chen, X.; Zhang, C.; Liu, S. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Appl. Surf. Sci. 2018, 439, 1079–1087. [Google Scholar] [CrossRef]
- Castriota, M.; Politano, G.G.; Vena, C.; De Santo, M.P.; Desiderio, G.; Davoli, M.; Cazzanelli, E.; Versace, C. Variable angle spectroscopic ellipsometry investigation of CVD-grown monolayer graphene. Appl. Surf. Sci. 2019, 467–468, 213–220. [Google Scholar] [CrossRef]
- Matković, A.; Chhikara, M.; Milićević, M.; Ralević, U.; Vasić, B.; Jovanović, D.; Belic, M.R.; Bratina, G.; Gajic, R. Influence of a gold substrate on the optical properties of graphene. J. Appl. Phys. 2015, 117, 015305. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W. Graphene annealing: How clean can it be? Nano Lett. 2012, 12, 414–419. [Google Scholar] [CrossRef]
- Lupina, G.; Kitzmann, J.; Costina, I.; Lukosius, M.; Wenger, C.; Wolff, A.; Vaziri, S.; Östling, M.; Pasternak, I.; Krajewska, A.; et al. Residual Metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 2015, 9, 4776–4785. [Google Scholar] [CrossRef]
- Yakubovsky, D.I.; Stebunov, Y.V.; Kirtaev, R.V.; Voronin, K.V.; Voronov, A.A.; Arsenin, A.V.; Volkov, V.S. Graphene-supported thin metal films for nanophotonics and optoelectronics. Nanomaterials 2018, 8, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrektsen, O.; Eriksen, R.L.; Novikov, S.M.; Schall, D.; Karl, M.; Bozhevolnyi, S.; Simonsen, A.C. High resolution imaging of few-layer graphene. J. Appl. Phys. 2012, 111, 064305. [Google Scholar] [CrossRef]
- Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palik, E.D. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780080547213. [Google Scholar]
- Ermolaev, G.A.; Tsapenko, A.P.; Volkov, V.S.; Anisimov, A.S.; Gladush, Y.G.; Nasibulin, A.G. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 2020, 116, 231103. [Google Scholar] [CrossRef]
- Zhu, S.-E.; Yuan, S.; Janssen, G.C.A. Optical transmittance of multilayer graphene. EPL 2014, 108, 17007. [Google Scholar] [CrossRef] [Green Version]
- Chugh, S.; Man, M.; Chen, Z.; Webb, K.J. Ultra-dark graphene stack metamaterials. Appl. Phys. Lett. 2015, 106, 061102. [Google Scholar] [CrossRef]
- Lin, H.; Sturmberg, B.C.P.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T.K.; De Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Segura, A.; Artús, L.; Cuscó, R.; Taniguchi, T.; Cassabois, G.; Gil, B. Natural optical anisotropy of h-BN: Highest giant bire-fringence in a bulk crystal through the mid-infrared to ultraviolet range. Phys. Rev. Mater. 2018, 2, 024001. [Google Scholar] [CrossRef] [Green Version]
- Yakubovsky, D.I.; Arsenin, A.V.; Stebunov, Y.V.; Fedyanin, D.Y.; Volkov, V.S. Optical constants and structural properties of thin gold films. Opt. Express 2017, 25, 25574–25587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Deng, Z.-L.; Hu, D.; Yuan, J.; Ou, Q.; Qin, F.; Zhang, Y.; Ouyang, X.; Li, Y.; Peng, B.; et al. Atomically thin noble metal dichalcogenides for phase-regulated meta-optics. Nano Lett. 2020, 20, 7811–7818. [Google Scholar] [CrossRef]
- Tompkins, H.G.; Irene, E.A. Handbook of Ellipsometry; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 9780815514992. [Google Scholar]
Substrate | AL | BL (eV) | EL (eV) | ρ (10−4 Ω∙m) | τ (fs) |
---|---|---|---|---|---|
SiO2/Si | 8.0531 | 1.5891 | 4.5715 | 5.3668 | 0.60878 |
Quartz | 8.4404 | 1.6275 | 4.6179 | 4.8038 | 0.65817 |
Glass | 7.8742 | 1.5650 | 4.5201 | 5.2734 | 0.61750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, M.A.; Ermolaev, G.A.; Voronin, K.V.; Romanov, R.I.; Tselikov, G.I.; Yakubovsky, D.I.; Doroshina, N.V.; Nemtsov, A.B.; Solovey, V.R.; Voronov, A.A.; et al. Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications. Nanomaterials 2021, 11, 1230. https://doi.org/10.3390/nano11051230
El-Sayed MA, Ermolaev GA, Voronin KV, Romanov RI, Tselikov GI, Yakubovsky DI, Doroshina NV, Nemtsov AB, Solovey VR, Voronov AA, et al. Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications. Nanomaterials. 2021; 11(5):1230. https://doi.org/10.3390/nano11051230
Chicago/Turabian StyleEl-Sayed, Marwa A., Georgy A. Ermolaev, Kirill V. Voronin, Roman I. Romanov, Gleb I. Tselikov, Dmitry I. Yakubovsky, Natalia V. Doroshina, Anton B. Nemtsov, Valentin R. Solovey, Artem A. Voronov, and et al. 2021. "Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications" Nanomaterials 11, no. 5: 1230. https://doi.org/10.3390/nano11051230
APA StyleEl-Sayed, M. A., Ermolaev, G. A., Voronin, K. V., Romanov, R. I., Tselikov, G. I., Yakubovsky, D. I., Doroshina, N. V., Nemtsov, A. B., Solovey, V. R., Voronov, A. A., Novikov, S. M., Vyshnevyy, A. A., Markeev, A. M., Arsenin, A. V., & Volkov, V. S. (2021). Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications. Nanomaterials, 11(5), 1230. https://doi.org/10.3390/nano11051230