Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
3.1. The Effects of UV Irradiation on Inverted QLEDs
3.2. The Effect of Storage Period on Inverted QLEDs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alivisatos, A.P.; Schlamp, M.C.; Colvin, V.L. Light-emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370, 354–357. [Google Scholar]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef]
- Shu, Y.; Lin, X.; Qin, H.; Hu, Z.; Jin, Y.; Peng, X. Quantum Dots for Display Applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 22312–22323. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Xiang, C.; Yang, Y.; Chen, Q.; Chen, L.; Yan, X.; Qian, L. Highly Stable QLEDs with Improved Hole Injection via Quantum Dot Structure Tailoring. Nat. Commun. 2018, 9, 2608. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Visible Quantum Dot Light-emitting Diodes with Simultaneous High Brightness and Efficiency. Nat. Photonics 2019, 13, 192–197. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.B.; Fan, F.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X.; Quan, L.N.; Fan, J.; Yang, Z.; et al. Bright Colloidal Quantum Dot Light-emitting Diodes Enabled by Efficient Chlorination. Nat. Photonics 2018, 12, 159–164. [Google Scholar] [CrossRef]
- Pu, C.; Dai, X.; Shu, Y.; Zhu, M.; Deng, Y.; Jin, Y.; Peng, X. Electrochemically-stable Ligands Bridge the Photoluminescence-electroluminescence Gap of Quantum Dots. Nat. Commun. 2020, 11, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Ye, Y.; Pu, C.; Deng, Y.; Dai, X.; Chen, X.; Chen, D.; Zheng, X.; Gao, Y.; Fang, W.; et al. High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots. Adv. Mater. 2018, 30, 1801387. [Google Scholar] [CrossRef]
- Rhee, S.; Chang, J.H.; Hahm, D.; Jeong, B.G.; Kim, J.; Lee, H.; Lim, J.; Hwang, E.; Kwak, J.; Bae, W.K. Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation. ACS Nano 2020, 14, 17496–17504. [Google Scholar] [CrossRef]
- Song, J.J.; Wang, O.; Shen, H.B.; Lin, Q.L.; Li, Z.H.; Wang, L.; Zhang, X.T.; Li, L.S. Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer. Adv. Funct. Mater. 2019, 29, 1808377. [Google Scholar] [CrossRef]
- Li, X.; Lin, Q.; Song, J.; Shen, H.; Zhang, H.; Li, L.S.; Li, X.; Du, Z. Quantum-Dot Light-Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Adv. Opt. Mater. 2019, 8, 1901145. [Google Scholar] [CrossRef]
- Wang, L.; Lin, J.; Hu, Y.; Guo, X.; Lv, Y.; Tang, Z.; Zhao, J.; Fan, Y.; Zhang, N.; Wang, Y.; et al. Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. ACS Appl. Mater. Interfaces 2017, 9, 38755–38760. [Google Scholar] [CrossRef]
- Xiang, C.; Wu, L.; Lu, Z.; Li, M.; Wen, Y.; Yang, Y.; Liu, W.; Zhang, T.; Cao, W.; Tsang, S.W.; et al. High Efficiency and Stability of Ink-Jet Printed Quantum Dot Light Emitting Diodes. Nat. Commun. 2020, 11, 1646. [Google Scholar] [CrossRef] [Green Version]
- Acharya, K.P.; Titov, A.; Hyvonen, J.; Wang, C.; Tokarz, J.; Holloway, P.H. High Efficiency Quantum Dot Light Emitting Diodes from Positive Aging. Nanoscale 2017, 9, 14451–14457. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Sun, Y.; Zhang, H.; Chen, S. Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes. Adv. Sci. 2018, 5, 1800549. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, D.; Dai, X.; Zhang, Z.; Lin, J.; Deng, Y.; Hao, Y.; Zhang, C.; Zhu, H.; Gao, F.; et al. Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance. Adv. Mater. 2020, 32, 2006178. [Google Scholar] [CrossRef]
- Li, Q.H.; Gao, T.; Wang, Y.G.; Wang, T.H. Adsorption and Desorption of Oxygen Probed from ZnO Nanowire Films by Photocurrent Measurements. Appl. Phys. Lett. 2005, 86, 123117. [Google Scholar] [CrossRef]
- Bao, J.; Shalish, I.; Su, Z.; Gurwitz, R.; Capasso, F.; Wang, X.; Ren, Z. Photoinduced Oxygen Release and Persistent Photoconductivity in ZnO Nanowires. Nanoscale Res. Lett. 2011, 6, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tudose, I.V.; Horvath, P.; Suchea, M.; Christoulakis, S.; Kitsopoulos, T.; Kiriakidis, G. Correlation of ZnO Thin Film Surface Properties with Conductivity. Appl. Phys. A-Mater. 2007, 89, 57–61. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wei, S.H.; Zunger, A. Intrinsic N-type Versus P-type Doping Asymmetry and the Defect Physics of ZnO. Phys. Rev. B 2001, 63, 075205. [Google Scholar] [CrossRef] [Green Version]
- Djurisic, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Lany, S.; Zunger, A. Anion Vacancies as a Source of Persistent Photoconductivity in II-VI and Chalcopyrite Semiconductors. Phys. Rev. B 2005, 72, 035215. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Choi, T.W.; Cheung, S.H.; Cheng, Y.; Xu, X.; Xie, Y.M.; Li, H.W.; Li, M.; Luo, H.; Zhang, W.; et al. Charge Transfer-induced Photoluminescence in ZnO Nanoparticles. Nanoscale 2019, 11, 8736–8743. [Google Scholar] [CrossRef]
- Li, Y.B.; Della Valle, F.; Simonnet, M.; Yamada, I.; Delaunay, J.J. Competitive Surface Effects of Oxygen and Water on UV Photoresponse of ZnO Nanowires. Appl. Phys. Lett. 2009, 94, 023110. [Google Scholar] [CrossRef] [Green Version]
- Bao, Q.Y.; Liu, X.J.; Xia, Y.X.; Gao, F.; Kauffmann, L.D.; Margeat, O.; Ackermann, J.; Fahlman, M. Effects of Ultraviolet Soaking on Surface Electronic Structures of Solution Processed ZnO Nanoparticle Films in Polymer Solar Cells. J. Mater. Chem. A 2014, 2, 17676–17682. [Google Scholar] [CrossRef] [Green Version]
- Raoufi, M.; Hormann, U.; Ligorio, G.; Hildebrandt, J.; Patzel, M.; Schultz, T.; Perdigon, L.; Koch, N.; List-Kratochvil, E.; Hecht, S.; et al. Simultaneous Effect of Ultraviolet Radiation and Surface Modification on the Work Function and Hole Injection Properties of ZnO Thin Films. Phys. Status Solidi A 2020, 217, 1900876. [Google Scholar] [CrossRef] [Green Version]
- Li, G.D.; Meng, L.X.; Zhu, X.F.; Gao, W.H.; Qin, Y.; Chen, L.W. Clarifying the High On/Off Ratio Mechanism of Nanowire UV Photodetector by Characterizing Surface Barrier Height. Nanoscale 2018, 10, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R.H.; Peng, X.; Jin, Y. Deciphering Exciton-generation Processes in Quantum-dot Electroluminescence. Nat. Commun. 2020, 11, 2309. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.; Peng, H.; Wei, J.; Zhang, S.; Chen, S. Efficient Quantum Dot Light-emitting Diodes with a Zn0.85Mg0.15O Interfacial Modification Layer. Nanoscale 2017, 9, 8962–8969. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Ma, Y.; Xu, Z.; Wu, L.; Yang, Y.; Tsang, S.W.; Chen, S. Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. J. Phys. Chem. Lett. 2020, 11, 5863–5870. [Google Scholar] [CrossRef]
- Tavasoli, E.; Guo, Y.J.; Kunal, P.; Grajeda, J.; Gerber, A.; Vela, J. Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange. Chem. Mater. 2012, 24, 4231–4241. [Google Scholar] [CrossRef]
UV Time | Von (V) | EQEmax (%) | PEmax (lm/W) | @5 V L (cd/m2) J (mA/cm2) | @1000 cd/m2 V (V) EQE (%) | ||
---|---|---|---|---|---|---|---|
Pristine | 3.0 | 12.7 | 7.9 | 383 | 3.2 | 5.5 | 12.3 |
5 min | 2.0 | 14.1 | 17.0 | 36,330 | 263.1 | 2.8 | 13.8 |
10 min | 2.0 | 15.1 | 17.4 | 51,175 | 343.2 | 2.7 | 14.5 |
15 min | 2.0 | 16.0 | 19.2 | 65,445 | 426.9 | 2.7 | 15.7 |
20 min | 2.0 | 15.0 | 16.8 | 69,694 | 474.8 | 2.7 | 14.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Wang, J.; Wang, P.; Mai, C.; Wang, J.; Yap, B.K.; Peng, J. Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes. Nanomaterials 2021, 11, 1606. https://doi.org/10.3390/nano11061606
Luo Y, Wang J, Wang P, Mai C, Wang J, Yap BK, Peng J. Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes. Nanomaterials. 2021; 11(6):1606. https://doi.org/10.3390/nano11061606
Chicago/Turabian StyleLuo, Yu, Junjie Wang, Pu Wang, Chaohuang Mai, Jian Wang, Boon Kar Yap, and Junbiao Peng. 2021. "Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes" Nanomaterials 11, no. 6: 1606. https://doi.org/10.3390/nano11061606
APA StyleLuo, Y., Wang, J., Wang, P., Mai, C., Wang, J., Yap, B. K., & Peng, J. (2021). Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes. Nanomaterials, 11(6), 1606. https://doi.org/10.3390/nano11061606