Synthesis and Study on Ni-Co Phosphite/Activated Carbon Fabric Composited Materials with Controllable Nano-Structure for Hybrid Super-Capacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Carbon Fabric (ACF)
2.2. Synthesis of MHP/ACF Composite Electrode
2.3. Characterizations
2.4. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E.E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441–473. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Najib, S.; Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 2019, 1, 2817–2827. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Huang, Y.; Pang, J.; Wang, K. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J. Power Sources 2019, 440, 227149. [Google Scholar] [CrossRef]
- Kim, D.W.; Jung, S.M.; Jung, H.Y. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J. Mater. Chem. A 2020, 8, 532–542. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 2012, 5, 5163–5185. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Han, X.; Pellegrinelli, C.; Zhu, Y.; Zhu, H.; Wan, J.; Chung, A.C.; Vaaland, O.; Wang, C. Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 2012, 12, 5664–5668. [Google Scholar] [CrossRef]
- Wu, Z.-J.; Zhou, Y.; Su, S.-H.; Gao, Z.-F.; Wu, X.-R.; Li, L.-S. A novel conversion of converter sludge into amorphous multi-doped FePO4 cathode material for lithium ion batteries. Scr. Mater. 2012, 67, 221–224. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Zhang, G.; Yang, Y. A Ni/Zn bi-metallic coordination supramolecular network applied for high performance energy storage material. Electrochim. Acta 2017, 228, 233–240. [Google Scholar] [CrossRef]
- Xu, J.-M.; Wang, X.-C.; Cheng, J.-P. Supercapacitive performances of ternary CuCo2S4 sulfides. ACS Omega 2020, 5, 1305–1311. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Gao, S.; Wang, B.; Wang, X.; Li, M.; Liu, F.; Cheng, J. Core-shell nanowires of NiCo2O4@ α-Co (OH)2 on Ni foam with enhanced performances for supercapacitors. J. Colloid Interface Sci. 2020, 579, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Chen, C.; Chien, H.; Lu, S.; Hu, C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Energy Mater. 2010, 22, 347–351. [Google Scholar] [CrossRef]
- Marcos, M.; Amoros, P.; Porter, A.; Manez, R.; Attfield, J. Novel crystalline microporous transition-metal phosphites M11(HPO3)8(OH)6 (M = Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives. Chem. Mater. 1993, 5, 121–128. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, Y.; Liao, K.; Wei, X. Large-scale synthesis of single crystalline NiHPO3· H2O nanoneedle bundles based on the dismutation of NaH2PO2. Cryst. Growth Des. 2008, 8, 3636–3640. [Google Scholar] [CrossRef]
- Ni, Y.; Liao, K.; Hong, J.; Wei, X. Ni2+ ions assisted hydrothermal synthesis of flowerlike Co11(HPO3)8(OH)6 superstructures and shape control. CrystEngComm 2009, 11, 570–575. [Google Scholar] [CrossRef]
- Liao, K.; Ni, Y. Synthesis of hierarchical Ni11(HPO3)8(OH)6 superstructures based on nanorods through a soft hydrothermal route. Mater. Res. Bull. 2010, 45, 205–209. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Xu, W.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X.; Zhang, C.; Gu, X.; Hu, C. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379–387. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.-P. Template-grown graphene/porous Fe2O3 nanocomposite: A high-performance anode material for pseudocapacitors. Nano Energy 2015, 15, 719–728. [Google Scholar] [CrossRef]
- Futaba, D.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994. [Google Scholar] [CrossRef]
- Kostoglou, N.; Koczwara, C.; Prehal, C.; Terziyska, V.; Babic, B.; Matovic, B.; Constantinides, G.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T. Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 2017, 40, 49–64. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Javed, M.S.; Asim, S.; Shaheen, A.; Khan, A.J.; Abbas, Y.; Ullah, N.; Iqbal, A.; Wang, M.; Qiao, G. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 2020, 46, 6406–6412. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 2020, 47, 113–121. [Google Scholar] [CrossRef]
- Jin, D.; Chen, S.; Wang, B.; Wang, L.; Wang, L.; Xi, Z. Stretchable composite electrode based on carbon network with interwoven structure for flexible supercapacitors. J. Mater. Sci. 2017, 52, 2849–2857. [Google Scholar] [CrossRef]
- Jin, L.; Hong, J.; Ni, Y. Large-scale synthesis of Mn11(HPO3)8(OH)6 superstructures constructed by microrods via a mixed-solvothermal route. Mater. Chem. Phys. 2010, 123, 337–342. [Google Scholar] [CrossRef]
- Xiao, X.; Ni, L.; Chen, G.; Ai, G.; Li, J.; Qiu, T.; Liu, X. Two-dimensional NiSe2 nanosheets on carbon fiber cloth for high-performance lithium-ion batteries. J. Alloys Compd. 2020, 821, 153218. [Google Scholar] [CrossRef]
- Luo, W.; Zeng, W.; Quan, H.; Pan, M.; Wang, Y.; Chen, D. Carbon dots decorated NiCo hydroxycarbonate hierarchical nanoarrays on carbon cloth with high areal capacitance as pseudocapacitor electrode. J. Alloys Compd. 2021, 868, 159048. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, Y.; Zhu, M.; Yin, S.; Cai, G.; Guo, S. Triple-layered sandwich nanotube of carbon nanotube@ TiO2 nanocrystalline@ carbon with superior lithium storage performance. Mater. Res. Bull. 2021, 133, 111076. [Google Scholar] [CrossRef]
- Huang, B.; Wang, H.; Liang, S.; Qin, H.; Li, Y.; Luo, Z.; Zhao, C.; Xie, L.; Chen, L. Two-dimensional porous cobalt–nickel tungstate thin sheets for high performance supercapattery. Energy Storage Mater. 2020, 32, 105–114. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, H.; Ren, X.; Zhao, N.; Peng, H.; Wang, C.; Wu, X.; Dong, G.; Long, C.; Wang, W. Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays. J. Power Sources 2019, 418, 202–210. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Q.; Zhu, M.; Cai, G.; Guo, S. Nano tube-in-tube CNT@ void@ TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage. J. Alloys Compd. 2021, 851, 156795. [Google Scholar] [CrossRef]
- Cheng, X.; Zheng, J.; Lu, J.; Li, Y.; Yan, P.; Zhang, Y. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy 2019, 62, 30–37. [Google Scholar] [CrossRef]
- Wang, K.-P.; Teng, H. Structural feature and double-layer capacitive performance of porous carbon powder derived from polyacrylonitrile-based carbon fiber. J. Electrochem. Soc. 2007, 154, A993. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L.; Li, Q.; Wang, T. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36–45. [Google Scholar] [CrossRef]
- Pan, M.; Zeng, W.; Quan, H.; Cui, J.; Guo, Y.; Wang, Y.; Chen, D. Low-crystalline Ni/Co-oxyhydroxides nanoarrays on carbon cloth with high mass loading and hierarchical structure as cathode for supercapacitors. Electrochim. Acta 2020, 357, 136886. [Google Scholar] [CrossRef]
- Mirghni, A.; Oyedotun, K.; Mahmoud, B.; Bello, A.; Ray, S.; Manyala, N. Nickel-cobalt phosphate/graphene foam as enhanced electrode for hybrid supercapacitor. Compos. Part B 2019, 174, 106953. [Google Scholar] [CrossRef]
- Tian, Y.; Lian, X.; Wu, Y.; Guo, W.; Wang, S. The morphology controlled growth of Co11(HPO3)8(OH)6 on nickel foams for quasi-solid-state supercapacitor applications. CrystEngComm 2020, 22, 5218–5225. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Kong, L.; Shi, M.; Han, W.; Kang, L. Facile synthesis of Co3P2O8·8H2O for high-performance electrochemical energy storage. Mater. Lett. 2015, 161, 404–407. [Google Scholar] [CrossRef]
- Katkar, P.; Marje, S.; Pujari, S.; Khalate, S.; Lokhande, A.; Patil, U. Enhanced energy density of all-solid-state asymmetric supercapacitors based on morphologically tuned hydrous cobalt phosphate electrode as cathode material. ACS Sustain. Chem. Eng. 2019, 7, 11205–11218. [Google Scholar] [CrossRef]
- Shao, H.; Padmanathan, N.; McNulty, D.; O′ Dwyer, C.; Razeeb, K. Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl. Mater. Interfaces 2016, 8, 28592–28598. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q.; He, Y.; Zhuang, D. Hierarchical Nickel–Cobalt Phosphide/Phosphate/Carbon Nanosheets for High-Performance Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 11945–11954. [Google Scholar] [CrossRef]
- Mirghni, A.; Madito, M.; Masikhwa, T.; Oyedotun, K.; Bello, A.; Manyala, N. Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 2017, 494, 325–337. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Zhou, J.; Yang, T.; Li, S.; Wang, L.; Cai, Y.; Wang, L. Synthesis and Study on Ni-Co Phosphite/Activated Carbon Fabric Composited Materials with Controllable Nano-Structure for Hybrid Super-Capacitor Applications. Nanomaterials 2021, 11, 1649. https://doi.org/10.3390/nano11071649
Jin D, Zhou J, Yang T, Li S, Wang L, Cai Y, Wang L. Synthesis and Study on Ni-Co Phosphite/Activated Carbon Fabric Composited Materials with Controllable Nano-Structure for Hybrid Super-Capacitor Applications. Nanomaterials. 2021; 11(7):1649. https://doi.org/10.3390/nano11071649
Chicago/Turabian StyleJin, Dalai, Jiamin Zhou, Tianpeng Yang, Saisai Li, Lina Wang, Yurong Cai, and Longcheng Wang. 2021. "Synthesis and Study on Ni-Co Phosphite/Activated Carbon Fabric Composited Materials with Controllable Nano-Structure for Hybrid Super-Capacitor Applications" Nanomaterials 11, no. 7: 1649. https://doi.org/10.3390/nano11071649