The Creation of True Two-Dimensional Silicon Carbide
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eddy, C., Jr.; Gaskill, D. Silicon Carbide as a Platform for Power Electronics. Science 2009, 324, 1398–1400. [Google Scholar] [CrossRef]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. A Silicon Carbide Room Temperature Single Photon Source. Nat. Mater. 2014, 13, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Zhang, Z.; Kutana, A.; Yakobson, B.I. Predicting Two-Dimensional Silicon Carbide Monolayers. ACS Nano 2015, 9, 9802–9809. [Google Scholar] [CrossRef]
- Hsueh, H.C.; Guo, G.Y.; Louie, S.G. Excitonic Effects in the Optical Properties of a SiC Sheet and Nanotubes. Phys. Rev. B 2011, 84, 085404. [Google Scholar] [CrossRef] [Green Version]
- Chabi, S.; Kadel, K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials 2020, 10, 2226. [Google Scholar] [CrossRef]
- Levinshtein, M.E.; Rumyantsev, S.L.; Shur, M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Lin, X.; Lin, S.; Xu, Y.; Hakro, A.A.; Hasan, T.; Zhang, B.; Yu, B.; Luo, J.; Li, E.; Chen, H. Ab Initio Study of Electronic and Optical Behavior of Two-Dimensional Silicon Carbide. J. Mater. Chem. C 2013, 1, 2131–2135. [Google Scholar] [CrossRef]
- Lü, T.-Y.; Liao, X.-X.; Wang, H.-Q.; Zheng, J.-C. Tuning the Indirect–Direct Band Gap Transition of SiC, GeC and SnC Monolayer in a Graphene-like Honeycomb Structure by Strain Engineering: A Quasiparticle GW Study. J. Mater. Chem. 2012, 22, 10062–10068. [Google Scholar] [CrossRef]
- Bekaroglu, E.; Topsakal, M.; Cahangirov, S.; Ciraci, S. First-Principles Study of Defects and Adatoms in Silicon Carbide Honeycomb Structures. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, I.J.; Guo, G.Y. Optical Properties of SiC Nanotubes: An Ab Initio Study. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 035343. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, Y.; Li, Z.; Li, Q.; Zhou, Z.; Chen, Z.; Yang, J.; Hou, J.G. Electronic Structures of SiC Nanoribbons. J. Chem. Phys. 2008, 129, 174114. [Google Scholar] [CrossRef]
- Alaal, N.; Loganathan, V.; Medhekar, N.; Shukla, A. First Principles Many-Body Calculations of Electronic Structure and Optical Properties of SiC Nanoribbons. J. Phys. D. Appl. Phys. 2016, 49, 105306. [Google Scholar] [CrossRef] [Green Version]
- Attaccalite, C.; Nguer, A.; Cannuccia, E.; Grüning, M. Strong Second Harmonic Generation in SiC, ZnO, GaN Two-Dimensional Hexagonal Crystals from First-Principles Many-Body Calculations. Phys. Chem. Chem. Phys. 2015, 17, 9533–9540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundquist, P.M.; Ong, H.C.; Lin, W.P.; Chang, R.P.H.; Ketterson, J.B.; Wong, G.K. Large Second-Order Optical Nonlinearities in Pulsed Laser Ablated Silicon Carbide Thin Films. Appl. Phys. Lett. 1995, 67, 2919. [Google Scholar] [CrossRef]
- Cheng, C.H.; Wu, C.L.; Lin, Y.H.; Yan, W.L.; Shih, M.H.; Chang, J.H.; Wu, C.I.; Lee, C.K.; Lin, G.R. Strong Optical Nonlinearity of the Nonstoichiometric Silicon Carbide. J. Mater. Chem. C 2015, 3, 10164–10176. [Google Scholar] [CrossRef]
- Manju, M.S.; Ajith, K.M.; Valsakumar, M.C. Strain Induced Anisotropic Mechanical and Electronic Properties of 2D-SiC. Mech. Mater. 2018, 120, 43–52. [Google Scholar]
- Susi, T.; Skákalová, V.; Mittelberger, A.; Kotrusz, P.; Hulman, M.; Pennycook, T.J.; Mangler, C.; Kotakoski, J.; Meyer, J.C. Computational Insights and the Observation of SiC Nanograin Assembly: Towards 2D Silicon Carbide. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Freeman, C.L.; Claeyssens, F.; Allan, N.L.; Harding, J.H. Graphitic Nanofilms as Precursors to Wurtzite Films: Theory. Phys. Rev. Lett. 2006, 96, 066102. [Google Scholar] [CrossRef]
- Guilhon, I.; Teles, L.K.; Marques, M.; Pela, R.R.; Bechstedt, F. Influence of structure and thermodynamic stability on electronic properties of two-dimensional SiC, SiGe, and GeC alloys. Phys. Rev. B. 2015, 92. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Yu, B.D. Computational Designing of Graphitic Silicon Carbide and Its Tubular Forms. Appl. Phys. Lett. 2002, 80, 586–588. [Google Scholar] [CrossRef]
- Miró, P.; Audiffred, M.; Heine, T. An Atlas of Two-Dimensional Materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef]
- Gutzler, R.; Schön, J.C. Two-Dimensional Silicon-Carbon Compounds: Structure Prediction and Band Structures. Zeitschrift für Anorg. und Allg. Chemie 2017, 643, 1368–1373. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater.Sci. 2013, 58, 1244–1315. [Google Scholar] [CrossRef]
- Brook, A.G.; Nyburg, S.C.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R.K.M.R.; Poon, Y.C.; Chang, Y.; Wong-ng, W. Stable Silaethylenes. J. Am. Chem. Soc. 1982, 14, 5667–5672. [Google Scholar] [CrossRef]
- Tokitoh, N.; Wakita, K.; Okazaki, R.; Nagase, S.; Von Rague Schleyer, P.; Jiao, H. A Stable Neutral Silaaromatic Compound, 2-{2, 4, 6-Tris [Bis (Trimethylsilyl) Methyl] Phenyl}-2- Silanaphthalene. J. Am. Chem. Soc. 1997, 762, 6951–6952. [Google Scholar] [CrossRef]
- Tusche, C.; Meyerheim, H.L.; Kirschner, J. Observation of Depolarized ZnO(0001) Monolayers: Formation of Unreconstructed Planar Sheets. Phys. Rev. Lett. 2007, 99, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Lagally, M.G.; Liu, F. Stabilizing Graphitic Thin Films of Wurtzite Materials by Epitaxial Strain. Phys. Rev. Lett. 2011, 107, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Huda, M.N.; Yan, Y.; Al-Jassim, M.M. On the Existence of Si-C Double Bonded Graphene-like Layers. Chem. Phys. Lett. 2009, 479, 255–258. [Google Scholar] [CrossRef]
- Gao, G.; Ashcroft, N.W.; Hoffmann, R. The Unusual and the Expected in the Si/C Phase Diagram. J. Am. Chem. Soc. 2013, 135, 11651–11656. [Google Scholar] [CrossRef] [PubMed]
- Pennington, G.; Goldsman, N. Self-Consistent Calculations for n-Type Hexagonal SiC Inversion Layers. J. Appl. Phys. 2013, 9, 4223–4234. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, R. Two-Dimensional Topological Insulators with Binary Honeycomb Lattices: SiC3 Siligraphene and Its Analogs. Phys. Rev. B 2014, 19, 195427. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, S.; Li, X.; Xu, W.; Pi, X.; Liu, X. Quasi-Two-Dimensional SiC and SiC2: Interaction of Silicon and Carbon at Atomic Thin Lattice Plane. J. Phys. Chem. C 2015, 119, 19772–19779. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhang, Y.F.; Wu, L.M. SiC2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cells. Nano Lett. 2013, 13, 5431–5436. [Google Scholar] [CrossRef]
- Chabi, S.; Rocha, V.G.; Garcı́a-Tuñón, E.; Ferraro, C.; Saiz, E.; Xia, Y.; Zhu, Y. Ultralight, strong, three-dimensional SiC structures. ACS Nano 2016, 10, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Lu, S.; Guo, Y.; Hu, X. Novel Bonding Patterns and Optoelectronic Properties of the Two-Dimensional Si x C Y. J. Mater. Chem. C 2017, 3561–3567. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Liang, X.; Ashcroft, N.W.; Hoffmann, R. Potential Semiconducting and Superconducting Metastable Si3C Structures under Pressure. Chem. Mater. 2018, 30, 421–427. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Baliga, B.J. Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices. IEEE Trans. Electron Devices 1993, 40, 645–655. [Google Scholar] [CrossRef]
- Dimoulas, A. Silicene and Germanene: Silicon and Germanium in the “Flatland”. Microelectron. Eng. 2015, 131, 68–78. [Google Scholar] [CrossRef]
- Vogt, P.; Vogt, P. Silicene, Germanene and Other Group IV 2D Materials. J. Nanotechnol. 2018, 9, 2665–2667. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y. Density Functional Theory Study of the Silicene-like SiX and XSi3 (X= B, C, N, Al, P) Honeycomb Lattices: The Various Buckled Structures and Versatile Electronic Properties. J. Phys. Chem. C 2013, 117, 18266–18278. [Google Scholar] [CrossRef]
- Chabi, S.; Chang, H.; Xia, Y.; Zhu, Y. From Graphene to Silicon Carbide: Ultrathin Silicon Carbide Flakes. Nanotechnology 2016, 27, 075602. [Google Scholar] [CrossRef]
- Lin, S.S. Light-Emitting Two-Dimensional Ultrathin Silicon Carbide. J. Phys. Chem. C 2012, 116, 3951–3955. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, H.; Pu, S.; Zhang, X. Photoluminescent Two-Dimensional SiC Quantum Dots for Cellular Imaging and Transport. Nano Res. 2018, 11, 4074–4081. [Google Scholar] [CrossRef]
- Rasband, W. ImageJ; National Institute of Health: Bethesda, MD, USA, 2020. [Google Scholar]
- Shen, J.; Wu, J.; Wang, M.; Dong, P.; Xu, J.; Li, X.; Zhang, X.; Yuan, J.; Wang, X.; Ye, M.; et al. Surface Tension Components Based Selection of Cosolvents for Effi Cient Liquid Phase Exfoliation of 2D Materials. Small 2016, 12, 2741–2749. [Google Scholar] [CrossRef]
- Wang, Y.; Slassi, A.; Cornil, J.; Beljonne, D.; Samorì, P. Tuning the Optical and Electrical Properties of Few-Layer Black Phosphorus via Physisorption of Small Solvent Molecules. Small 2019, 15, 1903432. [Google Scholar] [CrossRef] [Green Version]
- Blankschtein, D.; Sresht, P.V.; Engineering, C.; States, U.; Pascal, B. Liquid-Phase Exfoliation of Phosphorene: Design Rules From. ACS Nano 2015, 9, 8255–8268. [Google Scholar]
- Leigh, W.J.; Kerst, C.; Boukherroub, R.; Morkin, T.L.; Jenkins, S.I.; Sung, K.; Tidwell, T.T. Substituent Effects on the Reactivity of the Silicon-Carbon Double Bond. Substituted 1,1-Dimethylsilenes from Far-UV Laser Flash Photolysis of α-Silylketenes and (Trimethylsilyl)Diazomethane. J. Am. Chem. Soc. 1999, 121, 4744–4753. [Google Scholar] [CrossRef]
- Matsuo, T.; Hayakawa, N. π-Electron Systems Containing Si=Si Double Bonds. Sci. Technol. Adv. Mater. 2018, 19, 108–129. [Google Scholar] [CrossRef]
- Igarashi, M.; Ichinohe, M.; Sekiguchi, A. Air-Stable Disilacyclopropene with a Si=C Bond and Its Conversion to Disilacyclopropenylium Ion: Silicon-Carbon Hybrid 2π- Electron Systems. J. Am. Chem. Soc. 2007, 129, 12660–12661. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabi, S.; Guler, Z.; Brearley, A.J.; Benavidez, A.D.; Luk, T.S. The Creation of True Two-Dimensional Silicon Carbide. Nanomaterials 2021, 11, 1799. https://doi.org/10.3390/nano11071799
Chabi S, Guler Z, Brearley AJ, Benavidez AD, Luk TS. The Creation of True Two-Dimensional Silicon Carbide. Nanomaterials. 2021; 11(7):1799. https://doi.org/10.3390/nano11071799
Chicago/Turabian StyleChabi, Sakineh, Zeynel Guler, Adrian J. Brearley, Angelica D. Benavidez, and Ting Shan Luk. 2021. "The Creation of True Two-Dimensional Silicon Carbide" Nanomaterials 11, no. 7: 1799. https://doi.org/10.3390/nano11071799
APA StyleChabi, S., Guler, Z., Brearley, A. J., Benavidez, A. D., & Luk, T. S. (2021). The Creation of True Two-Dimensional Silicon Carbide. Nanomaterials, 11(7), 1799. https://doi.org/10.3390/nano11071799