Recent Advances of Photocatalytic Application in Water Treatment: A Review
Abstract
:1. Introduction
2. Basic Principles
3. Removal of Organic Compounds
3.1. Dyes
3.2. Petroleum Hydrocarbons
3.3. Phenolic Compounds
4. Removal of Heavy Metals
4.1. Chromium (Cr)
4.2. Lead (Pb)
4.3. Mercury (Hg)
4.4. Other Heavy Metals
5. Removal of Pharmaceutical
5.1. Antibiotics
5.2. Anti-Inflammatories
5.3. Lipid Regulators
6. Removal of Pesticides
7. Inactivation of Microorganisms
8. Design of Photocatalytic Reactors
9. Conclusions and Prospects
- (1)
- Better understanding of the photocatalysis of various pollutant mechanisms
- (2)
- Rational design of the catalysts and the photochemical system
- (3)
- Advanced characterization techniques for photocatalytic water treatment
- (4)
- Realization of photocatalytic wastewater treatment in practice
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- World-Water-Development-Report; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2020.
- Zazouli, M.A.; Kalankesh, L.R. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water: A review. J. Environ. Health Sci. Eng. 2017, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Zularisam, A.W.; Ismail, A.F.; Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment-a review. Desalination 2006, 194, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Mousset, E.; Doudrick, K. A review of electrochemical reduction processes to treat oxidized contaminants in water. Curr. Opin. Electrochem. 2020, 22, 221–227. [Google Scholar] [CrossRef]
- Arar, Ö.; Yüksel, Ü.; Kabay, N.; Yüksel, M. Various applications of electrodeionization (EDI) method for water treatment-A short review. Desalination 2014, 342, 16–22. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity. Catal. Sci. Technol. 2019, 9, 3979–3993. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Fewer-layer BN nanosheets-deposited on Bi2MoO6 microspheres with enhanced visible light-driven photocatalytic activity. Appl. Surf. Sci. 2019, 483, 572–580. [Google Scholar] [CrossRef]
- Rahim Pouran, S.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2015, 21, 53–69. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.S.; Tsai, D.P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef] [Green Version]
- Atabaev, T.S.; Molkenova, A. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives. Front. Mater. Sci. 2019, 13, 335–341. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2. Mater. Res. Bull. 2019, 111, 238–244. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 1977, 81, 1484–1488. [Google Scholar] [CrossRef]
- John, H.; Carey, J.L.; Helle, M. Tosine. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. [Google Scholar]
- Pruden, A.L.; Ollis, D.F. Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide. Environ. Sci. Technol. 1983, 17, 628–631. [Google Scholar] [CrossRef]
- Pruden, A.L.; Ollis, D.F. Photoassisted heterogeneous catalysis: The degradation of Trichloroethylene in water. J. Catal. 1983, 82, 404–417. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catal. Today 2020, 340, 334–346. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-W.; Zhu, Y.-J. Hierarchically nanostructured α-Fe2O3 hollow spheres: Preparation, growth mechanism, photocatalytic property, and application in water treatment. J. Phys. Chem. C 2008, 112, 6253–6257. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Sampaio, M.J.; Ribeiro, A.R.; Silva, C.G.; Faria, J.L.; Silva, A.M.T. Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl. Catal. B Environ. 2019, 248, 184–192. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. J. Mol. Catal. A Chem. 2016, 423, 533–549. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Lu, W.; Duan, C.; Liu, C.; Zhang, Y.; Meng, X.; Dai, L.; Wang, W.; Yu, H.; Ni, Y. A self-cleaning and photocatalytic cellulose-fiber- supported “Ag@AgCl@MOF- cloth’’ membrane for complex wastewater remediation. Carbohydr. Polym. 2020, 247, 116691. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Tran, M.L.; Tran, T.T.V.; Juang, R.-S. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 2020, 232, 115962. [Google Scholar] [CrossRef]
- Senthil, R.A.; Sun, M.; Pan, J.; Osman, S.; Khan, A.; Sun, Y. Facile fabrication of a new BiFeWO6/α-AgVO3 composite with efficient visible-light photocatalytic activity for dye-degradation. Opt. Mater. 2019, 92, 284–293. [Google Scholar] [CrossRef]
- Ni, X.; Chen, C.; Wang, Q.; Li, Z. One-step hydrothermal synthesis of SnO2-MoS2 composite heterostructure for improved visible light photocatalytic performance. Chem. Phys. 2019, 525, 110398. [Google Scholar] [CrossRef]
- Deebansok, S.; Amornsakchai, T.; Sae-ear, P.; Siriphannon, P.; Smith, S.M. Sphere-like and flake-like ZnO immobilized on pineapple leaf fibers as easy-to-recover photocatalyst for the degradation of congo red. J. Environ. Chem. Eng. 2021, 9. [Google Scholar] [CrossRef]
- Douglas, G.S.; Hardenstine, J.H.; Liu, B.; Uhler, A.D. Laboratory and field verification of a method to estimate the extent of petroleum biodegradation in soil. Environ. Sci. Technol. 2012, 46, 8279–8287. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lin, M. Synthesis of Biochar-Supported K-doped g-C3N4 Photocatalyst for Enhancing the Polycyclic Aromatic Hydrocarbon Degradation Activity. Int. J. Environ. Res. Public Health 2020, 17, 2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, Z.; Younesi, H.; Zinatizadeh, A.A. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere 2016, 159, 552–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Yu, J.; Zhang, Y.; Peng, Y.; Li, Z.; Feng, C.; Sun, Z.; Yu, X.F.; Cheng, J.; Wang, Y. Visible-near-infrared-responsive g-C3N4Hx+ reduced decatungstate with excellent performance for photocatalytic removal of petroleum hydrocarbon. J. Hazard. Mater. 2020, 381, 120994. [Google Scholar] [CrossRef] [PubMed]
- Maszenan, A.M.; Liu, Y.; Ng, W.J. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol. Adv. 2011, 29, 111–123. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 2010, 261, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Darabdhara, G.; Das, M.R. Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds. J. Hazard. Mater. 2019, 368, 365–377. [Google Scholar] [CrossRef]
- Ethiraj, A.S.; Uttam, P.; Varunkumar, K.; Chong, K.F.; Ali, G.A. Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation. Mater. Chem. Phys. 2020, 242, 122520. [Google Scholar] [CrossRef]
- Çinar, B.; Kerïmoğlu, I.; Tönbül, B.; Demïrbüken, A.; Dursun, S.; Cihan Kaya, I.; Kalem, V.; Akyildiz, H. Hydrothermal/electrospinning synthesis of CuO plate-like particles/TiO2 fibers heterostructures for high-efficiency photocatalytic degradation of organic dyes and phenolic pollutants. Mater. Sci. Semicond. Process. 2020, 109, 104919. [Google Scholar] [CrossRef]
- Bui, H.T.; Im, S.M.; Kim, K.-J.; Kim, W.; Lee, H. Photocatalytic degradation of phenolic compounds of defect engineered Fe3O4: An alternative approach to solar activation via ligand-to-metal charge transfer. Appl. Surf. Sci. 2020, 509, 144853. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, H.; Ouyang, T.; Jiang, Y.; Mu, M.; Yin, X. Cobalt-based ZIF coordinated hybrids with defective TiO2-x for boosting visible light-driven photo-Fenton-like degradation of bisphenol A. Chemosphere 2020, 259, 127431. [Google Scholar] [CrossRef]
- Gonçalves, N.P.F.; Minella, M.; Fabbri, D.; Calza, P.; Malitesta, C.; Mazzotta, E.; Bianco Prevot, A. Humic acid coated magnetic particles as highly efficient heterogeneous photo-Fenton materials for wastewater treatments. Chem. Eng. J. 2020, 390. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, Y.; Han, Q.; Cao, H.; Wang, Y.; Nawaz, F.; Duan, F. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag+/TiO2: Influence of electron donating and withdrawing substituents. J. Hazard. Mater. 2016, 304, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhu, C.; Chen, B.; Chen, J.; Fang, Q.; Wang, J.; He, Z.; Song, S. Novel photocatalytic performance of nanocage-like MIL-125-NH2 induced by adsorption of phenolic pollutants. Environ. Sci. Nano 2020, 7, 1525–1538. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Env. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D.; Chen, J.; Wang, X. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Q.; Xue, J.; Guan, R.; Li, Q.; Liu, X.; Jia, H.; Wu, Y. 3D hierarchically porous NiO/NF electrode for the removal of chromium(VI) from wastewater by electrocoagulation. Chem. Eng. J. 2020, 402. [Google Scholar] [CrossRef]
- Yan, R.; Luo, D.; Fu, C.; Tian, W.; Wu, P.; Wang, Y.; Zhang, H.; Jiang, W. Simultaneous Removal of Cu(II) and Cr(VI) Ions from Wastewater by Photoreduction with TiO2–ZrO2. J. Water Process Eng. 2020, 33. [Google Scholar] [CrossRef]
- Yang, R.; Zhong, S.; Zhang, L.; Liu, B. PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep. Purif. Technol. 2020, 235. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Xu, Z.; Su, H.; Bian, X.; Zhang, S.; Dong, X.; Zeng, L.; Zeng, T.; Feng, M.; et al. Carbon quantum dots implanted CdS nanosheets: Efficient visible-light-driven photocatalytic reduction of Cr(VI) under saline conditions. Appl. Catal. B Environ. 2020, 262, 118306. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI). Appl. Catal. B Environ. 2018, 232, 164–174. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Zhang, J.; Zuo, W.; Ding, Y. Efficient removal of chromium from water by Mn3O4@ZnO/Mn3O4 composite under simulated sunlight irradiation: Synergy of photocatalytic reduction and adsorption. Appl. Catal. B Environ. 2017, 214, 126–136. [Google Scholar] [CrossRef]
- Murruni, L.; Conde, F.; Leyva, G.; Litter, M.I. Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. Appl. Catal. B Environ. 2008, 84, 563–569. [Google Scholar] [CrossRef]
- Thomas, B.; Alexander, L.K. Removal of Pb2+ and Cd2+ toxic heavy metal ions driven by Fermi level modification in NiFe2O4-Pd nano hybrids. J. Solid State Chem. 2020, 288, 121417. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Rusydah bt Mohamad Shahdad, N.; Lim, Y.-C.; Pace, A. Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO2/Alg/FeNPs beads. Sustain. Chem. Pharm. 2019, 14, 100176. [Google Scholar] [CrossRef]
- Bi, J.; Huang, X.; Wang, J.; Wang, T.; Wu, H.; Yang, J.; Lu, H.; Hao, H. Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nanotube composites for simultaneous removal of Pb(II) and Rhodamine B. Chem. Eng. J. 2019, 366, 50–61. [Google Scholar] [CrossRef]
- Bi, J.; Wang, J.; Huang, X.; Tao, Q.; Chen, M.; Wang, T.; Hao, H. Enhanced removal of Pb(II) and organics by titanate in a designed simultaneous process. Sep. Purif. Technol. 2020, 251, 117339. [Google Scholar] [CrossRef]
- Hadi, P.; To, M.H.; Hui, C.W.; Lin, C.S.; McKay, G. Aqueous mercury adsorption by activated carbons. Water Res. 2015, 73, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Performance of mesoporous α-Fe2O3/g-C3N4 heterojunction for photoreduction of Hg(II) under visible light illumination. Ceram. Int. 2020, 46, 23098–23106. [Google Scholar] [CrossRef]
- Spanu, D.; Bestetti, A.; Hildebrand, H.; Schmuki, P.; Altomare, M.; Recchia, S. Photocatalytic reduction and scavenging of Hg(II) over templated-dewetted Au on TiO2 nanotubes. Photochem. Photobiol. Sci. 2019, 18, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg(II) photoreduction under visible light. J. Colloid Interface Sci. 2020, 580, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Decoration of g-C3N4 nanosheets by mesoporous CoFe2O4 nanoparticles for promoting visible-light photocatalytic Hg(II) reduction. Colloids Surf. A 2020, 603, 125206. [Google Scholar] [CrossRef]
- Rahimi, B.; Ebrahimi, A. Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: Optimization by response surface methodology (RSM). J. Taiwan Inst. Chem. Eng. 2019, 101, 64–79. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, W.; Tao, L.; Hao, B.; Zhang, J. Simultaneous photocatalytic redox removal of chromium(VI) and arsenic(III) by hydrothermal carbon-sphere@nano-Fe3O4. Environ. Sci. Nano 2019, 6, 937–947. [Google Scholar] [CrossRef]
- He, S.; Yang, Z.; Cui, X.; Zhang, X.; Niu, X. Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (VI). Chemosphere 2020, 260, 127548. [Google Scholar] [CrossRef]
- Chowdhury, P.; Athapaththu, S.; Elkamel, A.; Ray, A.K. Visible-solar-light-driven photo-reduction and removal of cadmium ion with Eosin Y-sensitized TiO2 in aqueous solution of triethanolamine. Sep. Purif. Technol. 2017, 174, 109–115. [Google Scholar] [CrossRef]
- Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chem. Eng. J. 2014, 243, 14–23. [Google Scholar] [CrossRef]
- Kay, P.; Hughes, S.R.; Ault, J.R.; Ashcroft, A.E.; Brown, L.E. Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters. Environ. Pollut. 2017, 220, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Haritash, A.K. Photocatalytic degradation of Amoxicillin in pharmaceutical wastewater: A potential tool to manage residual antibiotics. Environ. Technol. Innov. 2020, 20, 101072. [Google Scholar] [CrossRef]
- Meng, L.; Li, X.; Wang, X.; Ma, K.; Liu, G.; Zhang, J. Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system. J. Environ. Sci. China 2017, 61, 110–117. [Google Scholar] [CrossRef]
- Isari, A.A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E. N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: An effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem. Eng. J. 2020, 392. [Google Scholar] [CrossRef]
- Moradi, S.; Sobhgol, S.A.; Hayati, F.; Isari, A.A.; Kakavandi, B.; Bashardoust, P.; Anvaripour, B. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Sep. Purif. Technol. 2020, 251, 117373. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, L.; Li, K.; Wang, J.; Fang, D.; Zhang, Y.; Tian, D.; Zhang, Z.; Dionysiou, D.D. Fabrication of novel Z-scheme SrTiO3/MnFe2O4 system with double-response activity for simultaneous microwave-induced and photocatalytic degradation of tetracycline and mechanism insight. Chem. Eng. J. 2020, 400, 125981. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Shahrouzi, J.R.; Rahmani, F. Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic. Environ. Sci. Pollut. Res. 2021, 28, 862–879. [Google Scholar] [CrossRef] [PubMed]
- Isari, A.A.; Mehregan, M.; Mehregan, S.; Hayati, F.; Rezaei Kalantary, R.; Kakavandi, B. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system. J. Hazard. Mater. 2020, 390, 122050. [Google Scholar] [CrossRef]
- Adhikari, S.; Mandal, S.; Kim, D.-H. Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin. Chem. Eng. J. 2019, 373, 31–43. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, H.; Zhu, G.; Gao, Y.; Cheng, Q.; Cheng, X. Synthesis of magnetic nickel ferrite/carbon sphere composite for levofloxacin elimination by activation of persulfate. Sep. Purif. Technol. 2019, 215, 528–539. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, W.; Duan, J.; Fu, L.; Ma, L.; Yang, Z. Immobilized Ag3PO4/GO on 3D nickel foam and its photocatalytic degradation of norfloxacin antibiotic under visible light. RSC Adv. 2020, 10, 4427–4435. [Google Scholar] [CrossRef] [Green Version]
- Günal, A.Ç.; Erkmen, B.; Paçal, E.; Arslan, P.; Yildirim, Z.; Erkoç, F. Sub-lethal Effects of Imidacloprid on Nile Tilapia (Oreochromis niloticus). Water Air Soil Pollut. 2019, 231, 4. [Google Scholar] [CrossRef]
- Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Fatta-Kassinos, D. Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem. Eng. J. 2010, 161, 53–59. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, W.; Li, C.; Ao, X.; Yang, C.; Li, S. Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon process. Water Res. 2019, 161, 459–472. [Google Scholar] [CrossRef]
- Khalaf, S.; Shoqeir, J.H.; Lelario, F.; Bufo, S.A.; Karaman, R.; Scrano, L. TiO2 and Active Coated Glass Photodegradation of Ibuprofen. Catalysts 2020, 10, 560. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Wu, J.; Li, Z.; Huang, W.; Zheng, Y.; Lei, J.; Zhang, X.; Tang, L. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater. Res. Bull. 2020, 132, 111000. [Google Scholar] [CrossRef]
- Carbuloni, C.F.; Savoia, J.E.; Santos, J.S.P.; Pereira, C.A.A.; Marques, R.G.; Ribeiro, V.A.S.; Ferrari, A.M. Degradation of metformin in water by TiO2-ZrO2 photocatalysis. J. Environ. Manag. 2020, 262, 110347. [Google Scholar] [CrossRef]
- Chinnaiyan, P.; Thampi, S.G.; Kumar, M.; Balachandran, M. Photocatalytic degradation of metformin and amoxicillin in synthetic hospital wastewater: Effect of classical parameters. Int. J. Environ. Sci. Technol. 2018, 16, 5463–5474. [Google Scholar] [CrossRef]
- Hamza, R.A.; Iorhemen, O.T.; Tay, J.H. Occurrence, impacts and removal of emerging substances of concern from wastewater. Environ. Technol. Innov. 2016, 5, 161–175. [Google Scholar] [CrossRef]
- AbuKhadra, M.R.; Mohamed, A.S.; El-Sherbeeny, A.M.; Elmeligy, M.A. Enhanced photocatalytic degradation of acephate pesticide over MCM-41/Co3O4 nanocomposite synthesized from rice husk silica gel and Peach leaves. J. Hazard. Mater. 2020, 389, 122129. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.; Mohamed, R.M.; Mkhalid, I.A.; Youssef, M.A.; Awwad, N.S. Visible light-responsive Ag/LaTiO3 nanowire photocatalysts for efficient elimination of atrazine herbicide in water. J. Mol. Liq. 2020, 299, 112163. [Google Scholar] [CrossRef]
- Taghizade Firozjaee, T.; Mehrdadi, N.; Baghdadi, M.; Nabi Bidhendi, G.R. Application of nanotechnology in Pesticides removal from aqueous solutions-A review. Int. J. Nanotechnol. 2018, 15, 43–56. [Google Scholar]
- Mkhalid, I.A.; Fierro, J.L.G.; Mohamed, R.M.; Alshahri, A.A. Visible light driven photooxidation of imazapyr herbicide over highly efficient mesoporous Ag/Ag2O–TiO2 p-n heterojunction photocatalysts. Ceram. Int. 2020, 46, 25822–25832. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, Y.; Zhang, Z.; Pan, L.; Hu, L.; Liu, K.; Zhou, X.; Bai, L. Photocatalytic degradation of profenofos and triazophos residues in the Chinese cabbage, brassica chinensis, Using Ce-Doped TiO2. Catalysts 2019, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Lannoy, A.; Bleta, R.; Machut-Binkowski, C.; Addad, A.; Monflier, E.; Ponchel, A. Cyclodextrin-directed synthesis of gold-modified TiO2 materials and evaluation of their photocatalytic activity in the removal of a pesticide from water: Effect of porosity and particle size. ACS Sustain. Chem. Eng. 2017, 5, 3623–3630. [Google Scholar] [CrossRef]
- Jamal Sisi, A.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J. Mol. Liq. 2020, 308, 113018. [Google Scholar] [CrossRef]
- Wu, P.; Imlay, J.A.; Shang, J.K. Mechanism of escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials 2010, 31, 7526–7533. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, Y.; An, T.; Li, G.; Yip, H.Y.; Yu, J.C.; Wong, P.K. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism. Environ. Sci. Technol. 2012, 46, 4599–4606. [Google Scholar] [CrossRef]
- Regmi, C.; Kim, T.-H.; Ray, S.K.; Yamaguchi, T.; Lee, S.W. Cobalt-doped BiVO4 (Co-BiVO4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation of harmful microorganisms in wastewater. Res. Chem. Intermed. 2017, 43, 5203–5216. [Google Scholar] [CrossRef]
- Song, J.; Wu, X.; Zhang, M.; Liu, C.; Yu, J.; Sun, G.; Si, Y.; Ding, B. Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coli inactivation. Chem. Eng. J. 2020, 379, 122269. [Google Scholar] [CrossRef]
- Ng, T.W.; Zhang, L.; Liu, J.; Huang, G.; Wang, W.; Wong, P.K. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr. Water Res. 2016, 90, 111–118. [Google Scholar] [CrossRef]
- Abd Elkodous, M.; El-Sayyad, G.S.; Youssry, S.M.; Nada, H.G.; Gobara, M.; Elsayed, M.A.; El-Khawaga, A.M.; Kawamura, G.; Tan, W.K.; El-Batal, A.I.; et al. Carbon-dot-loaded CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Sci. Rep. 2020, 10, 11534. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Sannino, D. Main parameters influencing the design of photocatalytic reactors for wastewater treatment: A mini review. J. Chem. Technol. Biotechnol. 2020, 95. [Google Scholar] [CrossRef]
- Bello, M.M.; Abdul Raman, A.A.; Purushothaman, M. Applications of fluidized bed reactors in wastewater treatment—A review of the major design and operational parameters. J. Clean. Prod. 2017, 141, 1492–1514. [Google Scholar] [CrossRef]
- Phan, D.D.; Babick, F.; Nguyen, M.T.; Wessely, B.; Stintz, M. Modelling the influence of mass transfer on fixed-bed photocatalytic membrane reactors. Chem. Eng. Sci. 2017, 173, 242–252. [Google Scholar] [CrossRef]
- Joven-Quintero, S.A.; Castilla-Acevedo, S.F.; Betancourt-Buitrago, L.A.; Acosta-Herazo, R.; Machuca-Martinez, F. Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: A new perspective for mining wastewater treatment. Mater. Sci. Semicond. Process. 2020, 110. [Google Scholar] [CrossRef]
- Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. UiO-66(Ti)-Fe3O4-WO3 photocatalyst for efficient ammonia degradation from wastewater into continuous flow-loop thin film slurry flat-plate photoreactor. J. Hazard. Mater. 2020, 393, 122360. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, Z. Experimental analysis of a photoreactor packed with Pd-BiVO4-Coated glass beads. AIChE J. 2019, 65, 132–139. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Jiang, J.; Xing, L.; Wu, K. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde. Chem. Eng. J. 2020, 394. [Google Scholar] [CrossRef]
- Rahmani, E.; Rahmani, M.; Silab, H.R. TiO2:SiO2 thin film coated annular photoreactor for degradation of oily contamination from waste water. J. Water Process. Eng. 2020, 37. [Google Scholar] [CrossRef]
Treatment System | Classification | Characteristics | Materials | Pollutant | Light Source | Con. (mg/L)/(cfu/mL) | Volume (mL) | Irradiate Time (h) | Eff. (%) | Ref | Immobilized |
---|---|---|---|---|---|---|---|---|---|---|---|
Organic compounds | Dyes Water-soluble, not readily biodegradable, harmful to the ecosystem | Ag@AgC@MIL100(Fe)/CCF | MB | Vis light (500 W) | 20 | 40 | 2/3 | 99.2 | [28] | Yes | |
TiO2/ZnO/ rGO | MB, RhB, MO | UV/simulated solar illumination (300 W) | 20 | 1000 | 2 | 99.6 99.2 99.4 | [29] | No | |||
BiFeWO6/ α-AgVO3 | RhB | Vis light | 0.01 mM | 50 | 3/2 | 90.4 | [30] | No | |||
SnO2-MoS2 | MB, RhB | Vis light (200 W) | 20 | 100 | 2 | 96.4 93.1 | [31] | No | |||
ZnO/PALFs f | congo red | Vis light (300 W) | 20 | 10 | 5 | >95 | [32] | Yes | |||
Petroleum hydrocarbons | K-doped g-C3N4 | Naphthalene | Vis light (200 W) | 20 | 100 | 3 | 82.2 | [35] | No | ||
g-C3N4Hx+ | N-tetradecane | Vis light (300 W) | 5000 | 10 | 4 | 87.3 | [37] | No | |||
Phenolic compounds | Highly soluble in water, acutely toxic, biologically recalcitrant | Au@ Ni/rGO | Phenols | Sunlight | 1000 | - | 7/2 | 87.7 | [40] | No | |
Cu-NiO | Phenols | UV–Vis (150 W) | Real effluents | - | 5/2 | 85.7 | [41] | No | |||
CuO-TiO2 | UV light (96 W) | 15 mM | 100 | 1 | 100 | [42] | No | ||||
TiO2-x @ZIF-67 | BPA | Vis light | 50 | - | 1 | 95.3 | [44] | No | |||
Heavy metals | Cr | Carcinogens, harm human skin and internal organs | TiO2-ZrO2 | Cr(VI) | UV light | 0.5 | 1/12 | 100 | [51] | No | |
PW12/CN@ Bi2WO6 | Cr(VI) | Simulated xenon light (1000 W) | 20 | 50 | 3/2 | 98.7 | [52] | No | |||
CdS | Cr(VI) | Vis light (300 W) | 20 | 60 | 1/6 | 94.9 | [53] | No | |||
ZnIn2S4/ CdS | Cr(VI) | Vis light (300 W) | 50 | 50 | 1/2 | 100.0 | [54] | No | |||
Mn3O4@ ZnO/Mn3O4 | Cr (VI) | Sunlight (300 W) | 10 | 200 | 7/6 | 94.0 | [55] | No | |||
Pb | Toxicologica, fatal | TiO2/Alg/ FeNPs | Pb(II) | 254 nm ultraviolet C (30 W) | 20 | 100 | 6/5 | 99.6 | [58] | No | |
Fe3O4@ C@TiO2 | Pb(II) | UV–Vis (300 W) | 20 | 100 | 3 | 92.0 | [59] | No | |||
TiO2 | Pb(II) | 300–450 nm (15 W) | 0.5 mM | 450 | 4 | - | [56] | No | |||
Hg | High toxicity, tendency to bioaccumulate | α-Fe2O3/ g-C3N4 | Hg(II) | Vis light (400 W) | 100 | 500 | 1 | 90 | [62] | No | |
CuO/g-C3N4 | Hg(II) | Vis light (150 W) | 100 | 500 | 1 | 100.0 | [64] | No | |||
CoFe2O4/g-C3N4 | Hg(II) | Vis light (300 W) | 100 | 500 | 1 | 100.0 | [65] | No | |||
Pharmaceutical | Anti-biotics Water-soluble, not readily biodegradable, harmful to the ecosystem | MgO/ZnO/ Graphene | Sulfamethoxazole | UVA (30 W) | - | 200 | 7/2 | 94.4 COD | [75] | No | |
TiO2/CuO/MCM-41 | Tetracy-cline | UV light (125 W) | 20 | 200 | 1 | 70.5 | [77] | No | |||
MoS2/ Ag2Mo2O7 | Levofloxacin | Vis light (150 W) | 5 | - | 3/2 | 97.0 | [79] | No | |||
Ag3PO4/GO film | Norfloxacin | Vis light (250 W) | 15 | 120 | 5/3 | 83.6 | [81] | Yes | |||
Anti-inflammatories | High polarity, hydrophilicity, the absorption coefficient in the soil is low | TiO2 | Ibuprofen | Simulated solar irradiation (500 W) | 10 | 500 | 4/3 | 87.0 | [85] | No | |
Lipid regulators | Highly soluble in water, acutely toxic, biologically recalcitrant | TiO2-ZrO2 | Metformin | UV light (125 W) | 1 | 1/2 | 50.0 | [87] | No | ||
TiO2 | Amoxicillin metformin | UV lamp (125 W) | - | 200 | 3/2 | 90.0 98.0 | [88] | No | |||
Pesticides | Toxicity, biological resistance | Ag/Ag2O-TiO2 | Imazapyr | Vis light (1 mW/cm2) | 0.08 mM | 3 | 100 | [93] | No | ||
TiO2/Ce | Profenofos triazophos | Simulated xenon light | 20 | 50 | 3/2 | 98.7 | [94] | No | |||
Au/TiO2 | Phenoxyacetic acid | Vis light | 0.15 | - | 7 | 87.0 | [95] | No | |||
Ag/LaTiO3 | Atrazine | Vis light (300 W) | 50 | - | 2/3 | 100.0 | [91] | No | |||
Micro organisms | Causing a variety of gastrointestinal diseases, adenoviruses | Co-BiVO4 | Escherichia coli, Chlamydomonas pulsatilla | - | - | 70 | 5 1 | 81.3 65.6 | [99] | No | |
g-C3N4@ Co-TiO2 | Escherichia coli | Vis light (300 W) | 1 × 106 | 10 | 3/2 | 6 log inactivation | [100] | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. https://doi.org/10.3390/nano11071804
Ren G, Han H, Wang Y, Liu S, Zhao J, Meng X, Li Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials. 2021; 11(7):1804. https://doi.org/10.3390/nano11071804
Chicago/Turabian StyleRen, Guangmin, Hongtao Han, Yixuan Wang, Sitong Liu, Jianyong Zhao, Xiangchao Meng, and Zizhen Li. 2021. "Recent Advances of Photocatalytic Application in Water Treatment: A Review" Nanomaterials 11, no. 7: 1804. https://doi.org/10.3390/nano11071804
APA StyleRen, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., & Li, Z. (2021). Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials, 11(7), 1804. https://doi.org/10.3390/nano11071804