Nanoporous Co and N-Codoped Carbon Composite Derived from ZIF-67 for High-Performance Lithium-Sulfur Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of ZIF-67 Nanocubes
2.2. Preparation of Co-NC600
2.3. Preparation of S/ZIF-67 and S/Co-NC600
2.4. Material Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Li, Y.; Ren, J.; Rao, D.; Zheng, Q.; Zhou, L.; Lin, D. CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 2019, 55, 82–92. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Chen, J.; Cao, R.; Rajput, N.N.; Murugesan, V.; Shi, L.; Pan, H.; Zhang, J.G.; Liu, J.; Persson, K.A.; et al. Effects of Anion Mobility on Electrochemical Behaviors of Lithium-Sulfur Batteries. Chem. Mater. 2017, 29, 9023–9029. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.B.; Lou, X.W.D. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- Nazar, L.F.; Cuisinier, M.; Pang, Q. Lithium-sulfur batteries. MRS Bull. 2014, 39, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, W.X.; Chen, Y.; Fan, H.B.; Su, D.W.; Wang, G.X. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 2797–2807. [Google Scholar] [CrossRef]
- Pope, M.A.; Aksay, I.A. Structural Design of Cathodes for Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500124. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Xie, K.; Hong, X.B. Review of Electrolyte for Lithium Sulfur Battery. Acta Chim. Sin. 2014, 72, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yuan, L.X.; Yi, Z.Q.; Sun, Y.M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.L.; Huang, Y.H. Insight into the Electrode Mechanism in Lithium-Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Adv. Energy Mater. 2014, 4, 1301473. [Google Scholar] [CrossRef]
- Li, F.Q.; Zhu, Z.H. Development of lithium/sulfur battery and its facing challenge. Chin. J. Power Sour. 2016, 5, 1142–1144. [Google Scholar]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Wild, M. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium-Sulphur. Renew. Sustain. Energy Rev. 2016, 56, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.Q.; Zhang, Q.; Wei, F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and Prospects. Energy Storage Mater. 2015, 1, 127. [Google Scholar] [CrossRef]
- Pan, H.L.; Han, K.S.; Vijayakumar, M.; Xiao, J.; Cao, R.G.; Chen, J.Z.; Zhang, J.G.; Mueller, K.T.; Shao, Y.Y.; Liu, J. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, 4290–4295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Cheng, X.B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.H. Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Adv. Sci. 2017, 5, 1700270. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Nandasiri, M.I.; Lv, D.P.; Schwarz, A.M.; Darsell, J.T.; Henderson, W.A.; Tomalia, D.A.; Liu, J.; Zhang, J.G.; Xiao, J. Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes. Nano Energy 2016, 19, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Xiao, J.; Shao, Y.Y.; Zheng, J.M.; Bennett, W.D.; Lu, D.P.; Saraf, L.V.; Engelhard, M.; Ji, L.W.; Zhang, J.G.; et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.H.; Wen, Y.; Zhu, Y.J.; Gaskell, K.; Cychosz, K.A.; Eichhorn, B.; Xu, K.; Wang, C.S. Confined Sulfur in Microporous Carbon Renders Superior Cycling Stability in Li/S Batteries. Adv. Funct. Mater. 2015, 25, 4312–4320. [Google Scholar] [CrossRef]
- Chong, W.G.; Huang, J.Q.; Xu, Z.L.; Qin, X.Y.; Wang, X.Y.; Kim, J.K. Lithium-Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers. Adv. Funct. Mater. 2017, 27, 1604815. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Zou, R.Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866. [Google Scholar] [CrossRef]
- Xia, Y.; Fang, R.Y.; Xiao, Z.; Huang, H.; Gan, Y.P.; Yan, R.J.; Lu, X.H.; Liang, C.; Zhang, J.; Tao, X.Y.; et al. Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, 23782–23791. [Google Scholar] [CrossRef]
- Li, Y.J.; Fang, J.M.; Zhang, J.H.; Yang, J.F.; Yuan, R.M.; Chang, J.K.; Zheng, M.S.; Dong, Q.F. A Honeycomb-like Co@N-C Composite for Ultrahigh Sulfur Loading Li-S Batteries. ACS Nano 2017, 11, 11417–11424. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Guan, B.Y.; Lou, X.W. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors. Chem 2016, 1, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Kim, J.K.; Kim, J.H.; Kang, Y.C. Metal organic framework-templated hollow Co3O4 nanosphere aggregate/N-doped graphitic carbon composite powders showing excellent lithium-ion storage performances. Mater. Charact. 2017, 132, 320–329. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, W.Q.; Zou, M.C.; Wang, Y.S.; Chen, Y.J.; Xu, L.; Wu, H.S.; Cao, A.Y. 3D, Mutually Embedded MOF@Carbon Nanotube Hybrid Networks for High-Performance Lithium-Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1800013. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Wei, J.C.; Tan, L.C.; Yu, J.; Chen, Y.W. A Facile approach to NiCoO2 intimately standing on nitrogen doped graphene sheets by one-step hydrothermal synthesis for supercapacitors. J. Mater. Chem. A 2015, 3, 7121–7131. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Waller, G.H.; Liu, Y.; Liu, M.L.; Wong, C.P. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241–248. [Google Scholar] [CrossRef]
- Ge, X.L.; Li, C.X.; Li, Z.Q.; Yin, L.W. Tannic acid tuned metal-organic framework as a high-efficiency chemical anchor of polysulfide for lithium-sulfur batteries. Electrochim. Acta 2018, 281, 700–709. [Google Scholar] [CrossRef]
- Kang, X.; Di Bernardo, I.; Yang, H.L.; Torres, J.F.; Zhang, L. Metal-organic framework microdomains in 3D conductive host as polysulfide inhibitor for fast, long-cycle Li-S batteries. Appl. Surf. Sci. 2021, 535, 147680. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, M.C.; Zhao, W.Q.; Wang, Y.S.; Chen, Y.J.; Wu, Y.Z.; Dai, L.X.; Cao, A.Y. Highly Dispersed Catalytic Co3S4 among a Hierarchical Carbon Nanostructure for High-Rate and Long-Life Lithium-Sulfur Batteries. Acs Nano 2019, 13, 3982–3991. [Google Scholar] [CrossRef]
- Cui, G.L. Li, G.R.; Luo, D.; Zhang, Y.G.; Zhao, Y.; Wang, D.R.; Wang, J.Y.; Zhang, Z.; Wang, X.; Chen, Z.W.; Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685. [Google Scholar]
- Wang, J.H.; Gao, L.; Zhao, J.J.; Zheng, J.D.; Wang, J.; Huang, J.R. A facile in-situ synthesis of ZIF-8 nanoparticles anchored on reduced graphene oxide as a sulfur host for Li-S batteries. Mater. Res. Bull. 2021, 133, 111061. [Google Scholar] [CrossRef]
- Geng, P.B.; Cao, S.; Guo, X.T.; Ding, J.W.; Zhang, S.T.; Zheng, M.B.; Pang, H. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 19465–19470. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, Y.; Feng, X.R.; Yu, S.H.; Seok, J.; Muller, D.A.; Abruna, H.D. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li-S batteries. J. Mater. Chem. A 2019, 7, 21128–21139. [Google Scholar] [CrossRef]
- Wu, Z.L.; Wang, L.; Chen, S.X.; Zhu, X.M.; Deng, Q.; Wang, J.; Zeng, Z.L.; Deng, S.G. Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes. Chem. Eng. J. 2021, 404, 126579. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, H.P.; Wang, G.J.; Xia, Q.; Wu, Y.P.; Wu, H.Q. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 2007, 9, 1228–1232. [Google Scholar] [CrossRef]
Sulfur-Carrier Materials | Current Rate | Initial Discharge Capacity (mAh g−1) | Cycle Number | Average Capacity Decay Rate (%) | Reference |
---|---|---|---|---|---|
Co-NC600 | 1 C | 1042 | 1000 | 0.06 | In this work |
ZIF-8@3DC | 1 C/3 C | 1098 | 200/800 | 0.04 (3 C) | [29] |
CNTs/Co3S4@NC | 5 C | 850 | 1000 | 0.0137 | [30] |
3DOM ZIF-8 | 2 C | 802 | 500 | 0.028 | [31] |
ZIF-8@rGO | 1 C | 678 | 300 | - | [32] |
ZIF-67-PPy | 0.1 C | 1093 | 200 | - | [33] |
Z-CoS2 | 1 C | ~920 | 1000 | 0.04 | [34] |
HZIF/CNT | 0.5 C | 986 | 500 | 0.073 | [35] |
Sulfur-Carrier Materials | ZIF-67 | Co-NC600 |
---|---|---|
σw (Ω s−1/2) | 41.1 | 5.6 |
DLi (cm2 s−1) | 1.8 × 10−15 | 1.9 × 10−13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Hu, C.; Liu, Y.; Zhao, Y.; Yin, F. Nanoporous Co and N-Codoped Carbon Composite Derived from ZIF-67 for High-Performance Lithium-Sulfur Batteries. Nanomaterials 2021, 11, 1910. https://doi.org/10.3390/nano11081910
Niu S, Hu C, Liu Y, Zhao Y, Yin F. Nanoporous Co and N-Codoped Carbon Composite Derived from ZIF-67 for High-Performance Lithium-Sulfur Batteries. Nanomaterials. 2021; 11(8):1910. https://doi.org/10.3390/nano11081910
Chicago/Turabian StyleNiu, Songqiao, Chenchen Hu, Yanyu Liu, Yan Zhao, and Fuxing Yin. 2021. "Nanoporous Co and N-Codoped Carbon Composite Derived from ZIF-67 for High-Performance Lithium-Sulfur Batteries" Nanomaterials 11, no. 8: 1910. https://doi.org/10.3390/nano11081910
APA StyleNiu, S., Hu, C., Liu, Y., Zhao, Y., & Yin, F. (2021). Nanoporous Co and N-Codoped Carbon Composite Derived from ZIF-67 for High-Performance Lithium-Sulfur Batteries. Nanomaterials, 11(8), 1910. https://doi.org/10.3390/nano11081910