Accurate Determination of the Josephson Critical Current by Lock-In Measurements
Abstract
:1. Introduction
2. Results and Discussion
2.1. Theoretical Analysis of the Lock-In Response in the RSJ Model
2.2. Comparison with Experiment
2.3. Reconstruction of Magnetic Field Modulation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Likharev, K.K. Dynamics of Josephson Junctions and Circuits; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Martinis, J.M.; Devoret, M.H.; Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. Phys. Rev. B 1987, 35, 4682. [Google Scholar] [CrossRef]
- Martinis, J.M.; Grabert, H. Thermal enhancement of macroscopic quantum tunneling: Derivation from noise theory. Phys. Rev. B 1988, 38, 2371. [Google Scholar] [CrossRef]
- Kautz, R.L.; Martinis, J.M. Noise-affected I-V curves in small hysteretic Josephson junctions. Phys. Rev. B 1990, 42, 9903. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, V.M.; Golod, T.; Bauch, T.; Delsing, P. Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. Phys. Rev. B 2007, 76, 224517. [Google Scholar] [CrossRef] [Green Version]
- Makhlin, Y.; Schön, G.; Shnirman, A. Statistics and noise in a quantum measurement process. Phys. Rev. Lett. 2000, 85, 4578. [Google Scholar] [CrossRef] [Green Version]
- Paladino, E.; Faoro, L.; Falci, G.; Fazio, R. Decoherence and 1/f noise in Josephson qubits. Phys. Rev. Lett. 2002, 88, 228304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faivre, T.; Golubev, D.; Pekola, J.P. Josephson junction based thermometer and its application in bolometry. J. Appl. Phys. 2014, 116, 094302. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.; Chaudhari, P.; Kawasaki, M.; Ketchen, M.B.; Gupta, A. Low noise YBa2Cu3O7-δ grain boundary junction dc SQUIDs. Appl. Phys. Lett. 1990, 57, 727–729. [Google Scholar] [CrossRef]
- Koelle, D.R.; Kleiner, F.; Ludwig, E.D.; Clarke, J. High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys. 1999, 71, 631. [Google Scholar] [CrossRef]
- Kirtley, J.R.; Paulius, L.; Rosenberg, A.J.; Palmstrom, J.C.; Holland, C.M.; Spanton, E.M.; Schiessl, D.; Jermain, C.L.; Gibbons, J.; Fung, Y.K.K.; et al. Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 2016, 87, 093702. [Google Scholar] [CrossRef] [Green Version]
- Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; Ne’eman, L.; Vasyukov, D.; Zeldov, E.; Huber, M.E.; Martin, J.; Yacoby, A. Self-aligned nanoscale SQUID on a tip. Nano Lett. 2010, 10, 1046–1049. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Winkelmann, C.B.; Courtois, H.; Gupta, A.K. Josephson coupling in the dissipative state of a thermally hysteretic μ-SQUID. Phys. Rev. B 2018, 98, 174514. [Google Scholar] [CrossRef] [Green Version]
- Dimov, B.; Balashov, D.; Khabipov, M.; Ortlepp, T.; Buchholz, F.I.; Zorin, A.B.; Niemeyer, J.; Uhlmann, F.H. Implementation of superconductive passive phase shifters in high-speed integrated RSFQ digital circuits. Supercond. Sci. Technol. 2008, 21, 045007. [Google Scholar] [CrossRef]
- Wiedenmann, J.; Bocquillon, E.; Deacon, R.S.; Hartinger, S.; Herrmann, O.; Klapwijk, T.M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; et al. 4 π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, F.; Hassler, F.; Platero, G. Dynamical detection of Majorana fermions in current-biased nanowires. Phys. Rev. B 2012, 86, 140503. [Google Scholar] [CrossRef] [Green Version]
- Kalenyuk, A.A.; Pagliero, A.; Borodianskyi, E.A.; Kordyuk, A.A.; Krasnov, V.M. Phase-Sensitive Evidence for the Sign-Reversal s± Symmetry of the Order Parameter in an Iron-Pnictide Superconductor Using Nb/Ba1-xNaxFe2As2 Josephson Junctions. Phys. Rev. Lett. 2018, 120, 067001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iovan, A.; Golod, T.; Krasnov, V.M. Controllable generation of a spin-triplet supercurrent in a Josephson spin valve. Phys. Rev. B 2014, 90, 134514. [Google Scholar] [CrossRef] [Green Version]
- Kapran, O.M.; Iovan, A.; Golod, T.; Krasnov, V.M. Observation of the dominant spin-triplet supercurrent in Josephson spin valves with strong Ni ferromagnets. Phys. Rev. Res. 2020, 2, 013167. [Google Scholar] [CrossRef] [Green Version]
- Krasnov, V.M.; Oboznov, V.A.; Pedersen, N.F. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity. Phys. Rev. B 1997, 55, 14486–14498. [Google Scholar] [CrossRef] [Green Version]
- Krasnov, V.M. Josephson junctions in a local inhomogeneous magnetic field. Phys. Rev. B 2020, 101, 144507. [Google Scholar] [CrossRef] [Green Version]
- Kapran, O.M.; Golod, T.; Iovan, A.; Sidorenko, A.S.; Golubov, A.A.; Krasnov, V.M. Crossover between short- and long-range proximity effects in superconductor/ferromagnet/superconductor junctions with Ni-based ferromagnets. Phys. Rev. Res. 2020, 2, 013167. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovhannisyan, R.A.; Kapran, O.M.; Golod, T.; Krasnov, V.M. Accurate Determination of the Josephson Critical Current by Lock-In Measurements. Nanomaterials 2021, 11, 2058. https://doi.org/10.3390/nano11082058
Hovhannisyan RA, Kapran OM, Golod T, Krasnov VM. Accurate Determination of the Josephson Critical Current by Lock-In Measurements. Nanomaterials. 2021; 11(8):2058. https://doi.org/10.3390/nano11082058
Chicago/Turabian StyleHovhannisyan, Razmik A., Olena M. Kapran, Taras Golod, and Vladimir M. Krasnov. 2021. "Accurate Determination of the Josephson Critical Current by Lock-In Measurements" Nanomaterials 11, no. 8: 2058. https://doi.org/10.3390/nano11082058
APA StyleHovhannisyan, R. A., Kapran, O. M., Golod, T., & Krasnov, V. M. (2021). Accurate Determination of the Josephson Critical Current by Lock-In Measurements. Nanomaterials, 11(8), 2058. https://doi.org/10.3390/nano11082058