A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of bis-vinylimidazolium Salt 1
2.2. Synthesis Homopolymer
2.3. Synthesis of CNHs-1:12 and CNHs-1:4
2.4. Synthesis SW-1:4 and SW-1:2
2.5. Catalytic Tests
2.6. Recycling Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatti, T.; Vicentini, N.; Mba, M.; Menna, E. Organic Functionalized Carbon Nanostructures for Functional Polymer-Based Nanocomposites. Eur. J. Org. Chem. 2016, 2016, 1071–1090. [Google Scholar] [CrossRef]
- Monthioux, M.; Serp, P.; Caussat, B.; Flahaut, E.; Razafinimanana, M.; Valensi, F.; Laurent, C.; Peigney, A.; Mesguich, D.; Weibel, A.; et al. Carbon Nanotubes. In Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 193–247. [Google Scholar]
- Dai, L.; Chang, D.W.; Baek, J.-B.; Lu, W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small 2012, 8, 1130–1166. [Google Scholar] [CrossRef] [PubMed]
- Mauter, M.S.; Elimelech, M. Environmental Applications of Carbon-Based Nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhu, Y. Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices. Adv. Mater. 2015, 27, 1480–1511. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Roy, S.; Petrova, R.S.; Mitra, S. Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol. Rev. 2018, 7, 475–485. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Gun’ko, Y.K. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv. Mater. 2006, 18, 689–706. [Google Scholar] [CrossRef]
- Roy, N.; Sengupta, R.; Bhowmick, A.K. Modifications of carbon for polymer composites and nanocomposites. Prog. Polym. Sci. 2012, 37, 781–819. [Google Scholar] [CrossRef]
- Giacalone, F.; Campisciano, V.; Calabrese, C.; La Parola, V.; Syrgiannis, Z.; Prato, M.; Gruttadauria, M. Single-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS Nano 2016, 10, 4627–4636. [Google Scholar] [CrossRef]
- Campisciano, V.; Gruttadauria, M.; Giacalone, F. Modified Nanocarbons for Catalysis. ChemCatChem 2019, 11, 90–133. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujigaya, T.; Nakashima, N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 2015, 16, 024802. [Google Scholar] [CrossRef] [PubMed]
- Salvo, A.M.P.; La Parola, V.; Liotta, L.F.; Giacalone, F.; Gruttadauria, M. Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem 2016, 81, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Campisciano, V.; Gruttadauria, M.; Giacalone, F. Modified Nanocarbons as Catalysts in Organic Processes. In Catalyst Immobilization: Methods and Applications; Benaglia, M., Puglisi, A., Eds.; Wiley-VCH: Weinheim, Germany, 2019; pp. 77–113. [Google Scholar] [CrossRef]
- Bottari, G.; Herranz, M.Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D.M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464–4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, E.; Giacalone, F.; Prato, M. Non-conventional methods and media for the activation and manipulation of carbon nanoforms. Chem. Soc. Rev. 2014, 43, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Syrgiannis, Z.; La Parola, V.; Hadad, C.; Lucío, M.; Vázquez, E.; Giacalone, F.; Prato, M. An Atom-Economical Approach to Functionalized Single-Walled Carbon Nanotubes: Reaction with Disulfides. Angew. Chem. Int. Ed. 2013, 52, 6480–6483. [Google Scholar] [CrossRef] [PubMed]
- Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon nanotubes and catalysis: The many facets of a successful marriage. Catal. Sci. Technol. 2015, 5, 3859–3875. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef]
- Syrgiannis, Z.; Bonasera, A.; Tenori, E.; La Parola, V.; Hadad, C.; Gruttadauria, M.; Giacalone, F.; Prato, M. Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale 2015, 7, 6007–6013. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, W.; Wang, C.; Wen, T.-C.; Wei, Y. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog. Polym. Sci. 2011, 36, 671–712. [Google Scholar] [CrossRef]
- Oueiny, C.; Berlioz, S.; Perrin, F.-X. Carbon nanotube–polyaniline composites. Prog. Polym. Sci. 2014, 39, 707–748. [Google Scholar] [CrossRef]
- Fukushima, T.; Aida, T. Ionic Liquids for Soft Functional Materials with Carbon Nanotubes. Chem.-Eur. J. 2007, 13, 5048–5058. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Liotta, L.F.; Carbonell, E.; Giacalone, F.; Gruttadauria, M.; Aprile, C. Imidazolium-Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide: Unprecedented Increase of Catalytic Activity after Recycling. ChemSusChem 2017, 10, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Campisciano, V.; Burger, R.; Calabrese, C.; Liotta, L.F.; Lo Meo, P.; Gruttadauria, M.; Giacalone, F. Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Adv. 2020, 2, 4199–4211. [Google Scholar] [CrossRef]
- Campisciano, V.; Calabrese, C.; Liotta, L.F.; La Parola, V.; Spinella, A.; Aprile, C.; Gruttadauria, M.; Giacalone, F. Templating effect of carbon nanoforms on highly cross-linked imidazolium network: Catalytic activity of the resulting hybrids with Pd nanoparticles. Appl. Organomet. Chem. 2019, 33, e4848. [Google Scholar] [CrossRef]
- Chaugule, A.A.; Tamboli, A.H.; Kim, H. Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate. Fuel 2017, 200, 316–332. [Google Scholar] [CrossRef]
- Li, Z.-J.; Sun, J.-F.; Xu, Q.-Q.; Yin, J.-Z. Homogeneous and heterogeneous IL system: Promising ‘ideal catalysts’ for the fixation of CO2 into cyclic carbonates. ChemCatChem 2021, 13, 1848–1866. [Google Scholar] [CrossRef]
- Calabrese, C.; Liotta, L.F.; Giacalone, F.; Gruttadauria, M.; Aprile, C. Supported Polyhedral Oligomeric Silsesquioxane-Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO2. ChemCatChem 2019, 11, 560–567. [Google Scholar] [CrossRef]
- Buaki-Sogó, M.; Vivian, A.; Bivona, L.A.; García, H.; Gruttadauria, M.; Aprile, C. Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: Reducing the gap between homogeneous and heterogeneous catalysis. Catal. Sci. Technol. 2016, 6, 8418–8427. [Google Scholar] [CrossRef]
- Bivona, L.A.; Fichera, O.; Fusaro, L.; Giacalone, F.; Buaki-Sogo, M.; Gruttadauria, M.; Aprile, C. A polyhedral oligomeric silsesquioxane-based catalyst for the efficient synthesis of cyclic carbonates. Catal. Sci. Technol. 2015, 5, 5000–5007. [Google Scholar] [CrossRef]
- Calabrese, C.; Fusaro, L.; Liotta, L.F.; Giacalone, F.; Comès, A.; Campisciano, V.; Aprile, C.; Gruttadauria, M. Efficient Conversion of Carbon Dioxide by Imidazolium-Based Cross-Linked Nanostructures Containing Polyhedral Oligomeric Silsesquioxane (POSS) Building Blocks. ChemPlusChem 2019, 84, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Li, H.; Choi, S.-J.; Park, M.-S.; Lee, S.-M.; Kim, Y.-J.; Park, D.-W. Ionic liquids grafted on carbon nanotubes as highly efficient heterogeneous catalysts for the synthesis of cyclic carbonates. Appl. Catal. A 2012, 429–430, 67–72. [Google Scholar] [CrossRef]
- Lan, D.-H.; Chen, L.; Au, C.-T.; Yin, S.-F. One-pot synthesized multi-functional graphene oxide as a water-tolerant and efficient metal-free heterogeneous catalyst for cycloaddition reaction. Carbon 2015, 93, 22–31. [Google Scholar] [CrossRef]
- Lan, D.-H.; Gong, Y.-X.; Tan, N.-Y.; Wu, S.-S.; Shen, J.; Yao, K.-C.; Yi, B.; Au, C.-T.; Yin, S.-F. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions. Carbon 2018, 127, 245–254. [Google Scholar] [CrossRef]
- Zhang, W.-H.; He, P.-P.; Wu, S.; Xu, J.; Li, Y.; Zhang, G.; Wei, X.-Y. Graphene oxide grafted hydroxyl-functionalized ionic liquid: A highly efficient catalyst for cycloaddition of CO2 with epoxides. Appl. Catal. A 2016, 509, 111–117. [Google Scholar] [CrossRef]
- Calabrese, C.; Giacalone, F.; Aprile, C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts 2019, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Sakakura, T.; Kohno, K. The synthesis of organic carbonates from carbon dioxide. Chem. Commun. 2009, 1312–1330. [Google Scholar] [CrossRef]
- Luo, R.; Chen, M.; Liu, X.; Xu, W.; Li, J.; Liu, B.; Fang, Y. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites. J. Mater. Chem. A 2020, 8, 18408–18424. [Google Scholar] [CrossRef]
- Comès, A.; Collard, X.; Fusaro, L.; Atzori, L.; Cutrufello, M.G.; Aprile, C. Bi-functional heterogeneous catalysts for carbon dioxide conversion: Enhanced performances at low temperature. RSC Adv. 2018, 8, 25342–25350. [Google Scholar] [CrossRef] [Green Version]
- Campisciano, V.; Calabrese, C.; Giacalone, F.; Aprile, C.; Lo Meo, P.; Gruttadauria, M. Reconsidering TOF calculation in the transformation of epoxides and CO2 into cyclic carbonates. J. CO2 Util. 2020, 38, 132–140. [Google Scholar] [CrossRef]
- Decortes, A.; Castilla, A.M.; Kleij, A.W. Salen-Complex-Mediated Formation of Cyclic Carbonates by Cycloaddition of CO2 to Epoxides. Angew. Chem. Int. Ed. 2010, 49, 9822–9837. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, X.; Jiang, Y.; Sun, J.; Arai, M. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: Current state-of-the art of catalyst development and reaction analysis. Catal. Rev. 2019, 61, 214–269. [Google Scholar] [CrossRef]
- Gou, H.; Ma, X.; Su, Q.; Liu, L.; Ying, T.; Qian, W.; Dong, L.; Cheng, W. Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO2 to cyclic carbonates. Phys. Chem. Chem. Phys. 2021, 23, 2005–2014. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhu, Z.; Chang, T.; Fu, X.; Hao, Y.; Meng, X.; Panchal, B.; Qin, S. Hydroxylamino-Anchored Poly(Ionic Liquid)s for CO2 Fixation into Cyclic Carbonates at Mild Conditions. Adv. Sustain. Syst. 2021, 5, 2000133. [Google Scholar] [CrossRef]
- Ye, Y.; Li, D.; Xu, P.; Sun, J. B-Doped and NH2-functionalized SBA-15 with hydrogen bond donor groups for effective catalysis of CO2 cycloaddition to epoxides. Inorg. Chem. Front. 2020, 7, 3636–3645. [Google Scholar] [CrossRef]
- Alassmy, Y.A.; Asgar Pour, Z.; Pescarmona, P.P. Efficient and Easily Reusable Metal-Free Heterogeneous Catalyst Beads for the Conversion of CO2 into Cyclic Carbonates in the Presence of Water as Hydrogen-Bond Donor. ACS Sustain. Chem. Eng. 2020, 8, 7993–8003. [Google Scholar] [CrossRef]
- Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; von Solms, N.; Zhang, X.; Zhang, X. Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chem. 2019, 21, 3456–3463. [Google Scholar] [CrossRef]
- Chand, H.; Choudhary, P.; Kumar, A.; Kumar, A.; Krishnan, V. Atmospheric pressure conversion of carbon dioxide to cyclic carbonates using a metal-free Lewis acid-base bifunctional heterogeneous catalyst. J. CO2 Util. 2021, 51, 101646. [Google Scholar] [CrossRef]
- Anthofer, M.H.; Wilhelm, M.E.; Cokoja, M.; Drees, M.; Herrmann, W.A.; Kühn, F.E. Hydroxy-Functionalized Imidazolium Bromides as Catalysts for the Cycloaddition of CO2 and Epoxides to Cyclic Carbonates. ChemCatChem 2015, 7, 94–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Wu, L.; Liu, K.; Zhong, H.; Long, Z.; Tong, M.; Yang, Z.; Dai, S. Two-in-one: Construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO2 fixation. Chem. Commun. 2020, 56, 3309–3312. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Support | 1 (mg) (mmol) | Support/1 Weight Ratio | Imi+ Loading (mmol g−1) 1 | SSA (m2 g−1) 2 |
---|---|---|---|---|---|
HP (2a) | none | (825) (2.03) | – | 4.3 | <10 |
MW-1:12 (3a) | MWCNTs | (600) (1.47) | 1:12 | 3.9 | 15 |
NH-1:12 (4a) | CNHs | (600) (1.47) | 1:12 | 3.8 | 24 |
NH-1:4 (4b) | CNHs | (200) (0.49) | 1:4 | 3.3 | <10 |
SW-1:4 (5a) | SWCNTs | (400) (0.98) | 1:4 | 3.1 | 65 |
SW-1:2 (5b) | SWCNTs | (400) (0.98) | 1:2 | 2.6 | 196 |
Entry | Catalyst | Loading (mol%) | Conversion (%) 2 | TON |
---|---|---|---|---|
1 | HP | 0.09 | 49 | 575 |
2 | MW-1:12 | 0.08 | 50 | 645 |
3 | NH-1:12 | 0.08 | 38 | 504 |
4 | NH-1:4 | 0.07 | 36 | 548 |
5 | SW-1:4 | 0.06 | 56 | 922 |
6 | SW-1:2 | 0.05 | 60 | 1154 |
Test Type | Before Reaction (Conversion %) 9 | After Reaction (Conversion %) 9 | Δ Conversion (%) |
---|---|---|---|
Test 1 1 | 0 | 50 | 50 |
Test 2 2 | 50 | 78 | 28 |
Test 3 3 | 78 | 89 | 11 |
Test 4 4 | 0 | 34 | 34 |
Test 5 5 | 34 | 56 | 22 |
Blank 1 6 | 0 | 3 | 3 |
Blank 2 7 | 50 | 54 | 4 |
Test 6 8 | 0 | 17 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morena, A.; Campisciano, V.; Comès, A.; Liotta, L.F.; Gruttadauria, M.; Aprile, C.; Giacalone, F. A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. Nanomaterials 2021, 11, 2243. https://doi.org/10.3390/nano11092243
Morena A, Campisciano V, Comès A, Liotta LF, Gruttadauria M, Aprile C, Giacalone F. A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. Nanomaterials. 2021; 11(9):2243. https://doi.org/10.3390/nano11092243
Chicago/Turabian StyleMorena, Anthony, Vincenzo Campisciano, Adrien Comès, Leonarda Francesca Liotta, Michelangelo Gruttadauria, Carmela Aprile, and Francesco Giacalone. 2021. "A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse" Nanomaterials 11, no. 9: 2243. https://doi.org/10.3390/nano11092243
APA StyleMorena, A., Campisciano, V., Comès, A., Liotta, L. F., Gruttadauria, M., Aprile, C., & Giacalone, F. (2021). A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. Nanomaterials, 11(9), 2243. https://doi.org/10.3390/nano11092243