Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Fabrication Technique
2.2. Characterization Methods
2.2.1. Morphological and Structural Characterization
2.2.2. SEM Characterization
2.2.3. AFM Characterization
2.2.4. X-ray Diffraction
2.2.5. Optical Characterization
Spectrophotometry (UV-Vis)
Ellipsometry
3. Results and Discussions
3.1. SEM Microscopy Analysis—Film Thickness Evaluation
3.2. Structural Characterization, X-ray Diffraction
3.3. AFM Characterization
3.4. Optical Characterization
3.4.1. Ellipsometry
3.4.2. Optical Spectroscopy and Bandgap
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rusu, G.I.; Prepeliţă, P.; Rusu, R.S.; Apetroaie, N.; Oniciuc, G.; Amariei, A. On the structural and optical characteristics of zinc telluride thin films. J. Optoelectron. Adv. Mater. 2006, 8, 922–926. [Google Scholar]
- Rathod, J.R.; Patel, H.S.; Patel, K.D.; Pathak, V.M. Structural and Optical Characterization of Zinc Telluride Thin Films. Adv. Mater. Res. 2013, 665, 254–262. [Google Scholar] [CrossRef]
- Shanmugan, S.; Mutharasu, D. Optical Properties and Surface Morphology of Zinc Telluride Thin Films Prepared by Stacked Elemental Layer Method. Mater. Sci. 2012, 18, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shen, Y.; Chen, R.; Huang, J.; Cao, M.; Gu, F.; Wang, L.; Min, J. Effect of ZnTe transition layer to the performance of CdZnTe/GaN multilayer films for solar-blind photodetector applications. J. Phys. D Appl. Phys. 2020, 53, 415105. [Google Scholar] [CrossRef]
- Suthar, D.; Himanshu; Patel, S.L.; Chander, S.; Kannan, M.D.; Dhaka, M.S. Enhanced physicochemical properties of ZnTe thin films as potential buffer layer in solar cell applications. Solid State Sci. 2020, 107, 106346. [Google Scholar] [CrossRef]
- Zarei, R.; Ehsani, M.H.; Dizaji, H.R. An investigation on structural and optical properties of nanocolumnar ZnTe thin films grown by glancing angle technique. Mater. Res. Express 2020, 7, 026419. [Google Scholar] [CrossRef]
- Isik, M.; Gullu, H.H.; Parlak, M.; Gasanly, N.M. Synthesis and temperature-tuned band gap characteristics of magnetron sputtered ZnTe thin films. Phys. B Condens. Matter 2020, 582, 411968. [Google Scholar] [CrossRef]
- Toma, O.; Ion, L.; Iftimie, S.; Antohe, V.A.; Radu, A.; Raduta, A.M.; Manica, D.; Antohe, S. Physical properties of rf-sputtered ZnS and ZnSe thin films used for doubleheterojunction ZnS/ZnSe/CdTe photovoltaic structures. Appl. Surf. Sci. 2019, 478, 831–839. [Google Scholar] [CrossRef]
- Maki, S.A.; Hanan, H.K. The Structural and Optical Properties of Zinc Telluride Thin Films by Vacuum Thermal Evaporation Technique. Ibn AL-Haitham J. Pure Appl. Sci. 2017, 29, 70–80. [Google Scholar]
- Ikhioya, I.L. Optical and electrical properties of znte thin films using electrodeposition technique. Int. J. Innov. Appl. Stud. 2015, 12, 369–373. [Google Scholar]
- Li, J.; Diercks, D.R.; Ohno, T.R.; Warren, C.W.; Lonergan, M.C.; Beach, J.D.; Wolden, C.A. Controlled activation of ZnTe: Cu contacted CdTe solar cells using rapid thermal processing. Sol. Energy Mater. Sol. Cells 2015, 133, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Gessert, T.A.; Asher, S.; Johnston, S.; Young, M.; Dippo, P.; Corwine, C. Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact. Thin Solid Film. 2007, 515, 6103–6106. [Google Scholar] [CrossRef]
- Lopez, J.D.; Tirado-Mejia, L.; Ariza-Calderon, H.; Riascos, H.; de Anda, F.; Mosquera, E. Structural and optical properties of gadolinium doped ZnTe thin films. Mater. Lett. 2020, 268, 127562. [Google Scholar] [CrossRef]
- Bhahada, K.C.; Tripathi, B.; Acharya, N.K.; Kulriya, P.K.; Vijay, Y.K. Formation of ZnTe by stacked elemental layer method. Appl. Surf. Sci. 2008, 255, 2143–2148. [Google Scholar] [CrossRef]
- Pfisterer, F.; Schock, H.W. ZnTe-CdS Thin-Film photo-voltaic cells. J. Cryst. Growth 1982, 59, 432–439. [Google Scholar] [CrossRef]
- Naifar, A.; Zeiri, N.; Nasrallah, S.A.-B.; Said, M. Optical properties of CdSe/ZnTe type II core shell nanostructures. Optik 2017, 146, 90–97. [Google Scholar] [CrossRef]
- Mahmood, W.; Shah, N.A. Effects of metal doping on the physical properties of ZnTe thin films. Curr. Appl. Phys. 2014, 14, 282–286. [Google Scholar] [CrossRef]
- Wolden, C.A.; Abbas, A.; Li, J.; Diercks, D.R.; Meysing, D.M.; Ohno, T.R.; Beach, J.D.; Barnes, T.M.; Walls, J.M. The roles of ZnTe buffer layers on CdTe solar cell performance. Sol. Energy Mater. Sol. Cells 2016, 147, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Irfan, G.S.; Nakayama, H.; Nishio, M.; Yoshida, A. Growth of low resistivity n-type ZnTe by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 1994, 33, L980–L982. [Google Scholar] [CrossRef]
- Rehman, K.M.U.; Liu, X.S.; Riaz, M.; Yang, Y.J.; Feng, S.J.; Khan, M.W.; Ahmad, A.; Shezad, M.; Wazir, Z.; Ali, Z.; et al. Fabrication and characterization of Zinc Telluride (ZnTe) thin films grown on glass substrates. Phys. B Condens. Matter 2019, 560, 204–207. [Google Scholar] [CrossRef]
- Chang, J.H.; Takai, T.; Koo, B.H.; Song, J.S.; Handa, T.; Yao, T. Aluminum-doped n-type ZnTe layers grown by molecular-beam epitaxy. Appl. Phys. Lett. 2001, 79, 785–787. [Google Scholar] [CrossRef]
- Mahalingam, T.; John, V.S.; Rajendran, S.; Sebastian, P.J. Electrochemical deposition of ZnTe thin films. Semicond. Sci. Technol. 2002, 17, 465–470. [Google Scholar] [CrossRef]
- Structural and Optical Properties of ZnTe Thin Films Induced by Plasma Immersion O−ion Implantation. Available online: https://www.semanticscholar.org/paper/Structural-and-optical-properties-of-ZnTe-thin-by-O-Aboraia-Ahmad/b4307edf5d7445fb79363dbe93d32cd0ac20a88a (accessed on 30 August 2021).
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Available online: http://gwyddion.net/documentation/user-guide-en/roughness-iso.html (accessed on 30 August 2021).
- J.A. Woollam Co., Inc. VASE® Specifications—Technical Specifications. 2007. Available online: https://www.jawoollam.com/download/pdfs/vase-brochure.pdf (accessed on 30 August 2021).
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Potlog, T.; Maticiuc, N.; Mirzac, A.; Dumitriu, P.; Scortescu, D. Structural and optical properties of ZnTe thin films. In Proceedings of the CAS 2012 (International Semiconductor Conference), Sinaia, Romania, 15–17 October 2012; pp. 321–324. [Google Scholar] [CrossRef]
- Toma, O.; Pascu, R.; Dinescu, M.; Besleaga, C.; Mitran, T.L.; Scarisoreanu, N.; Antohe, S. Growth and Characterization of Nanocrystalline CdS Thin Films. Chalcogenide Lett. 2011, 8, 541–548. [Google Scholar]
- Antohe, S.; Ion, L.; Girtan, M.; Toma, O. Optical and morphological studies of thermally vacuum evaporated ZnSe thin films. Rom. Rep. Phys. 2013, 65, 805–811. [Google Scholar]
- Ion, L.; Iftimie, S.; Radu, A.; Antohe, V.A.; Toma, O.; Antohe, S. Physical properties of RF-sputtered ZnSe thin films for photovoltaic applications: Influence of film thickness. Proc. Rom. Acad. Ser. A 2021, 22, 25–34. [Google Scholar]
- Toma, O.; Ion, L.; Iftimie, S.; Radu, A.; Antohe, S. Structural, morphological and optical properties of rf-Sputtered CdS thin films. Mater. Des. 2016, 100, 198–203. [Google Scholar] [CrossRef]
- Toma, O.; Ion, L.; Girtan, M.; Antohe, S. Optical, morphological and electrical studies of thermally vacuum evaporated CdTe thin films for photovoltaic applications. Sol. Energy 2014, 108, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Ruxandra, V.; Antohe, S. The effect of the electron irradiation on the electrical properties of thin polycrystalline CdS layers. J. Appl. Phys. 1998, 84, 727–733. [Google Scholar] [CrossRef]
- Yoffe, A.D. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 1993, 42, 173–262. [Google Scholar] [CrossRef]
Sample | Mean Surface Area m2 | Number of Grains Used for the Surface Area Estimation | Mean Volume m3 | Number of Grains Used for Volume Estimation | Grain Boundaries nm | Number of Grains Used for Grain Boundaries Estimation | Mean Grain Radius nm | Number of Grains Used for Grain Radius Estimation | Surface Area/ Volume m−1 |
---|---|---|---|---|---|---|---|---|---|
ZnTe1 | 4.87E−16 | 6979 | 3.61E−26 | 7163 | 29.37 | 4851 | 9.46 | 5772 | 1.35E + 10 |
ZnTe2 | 4.42E−16 | 7270 | 2.26E−24 | 5773 | 31.36 | 5208 | 9.39 | 5884 | 1.95E + 8 |
ZnTe3 | 5.76E−16 | 7272 | 2.16E−25 | 7442 | 33.97 | 5283 | 9.95 | 6033 | 2.67E + 9 |
ZnTe4 | 4.52E−16 | 7337 | 2.39E−24 | 5432 | 31.59 | 5357 | 9.68 | 6210 | 1.89E + 8 |
ZnTe1 (nm) | ZnTe 2 (nm) | ZnTe 3 (nm) | ZnTe 4 (nm) | |
---|---|---|---|---|
Rq | 4.08 | 3.45 | 3.29 | 3.09 |
Grain-wise Rpv | 39.54 | 24.07 | 60.49 | 37.95 |
Ra | 3.30 | 2.77 | 2.46 | 2.32 |
Rsk | 0.18 | 0.04 | −1.33 | −0.92 |
Rz | 36.32 | 23.52 | 54.33 | 36.03 |
Rku | 2.87 | 2.79 | 14.55 | 6.13 |
Sample | Type of Substrate | Deposition Time (min) | Roughness Measured by SE (nm) | RMS Roughness AFM (nm) | Thickness Nonuniformity (%) | MSE | |
---|---|---|---|---|---|---|---|
2 × 2 µm 2 | 5 × 5 µm 2 | ||||||
ZnTe1 (5’) | BK7 | 5 | 0.000 | 4.2 | 4.1 | 38.851% | 15.01 |
ZnTe2 (10’) | BK7 | 10 | 0.608 | 3.1 | 3.5 | 63.064% | 0.2747 |
ZnTe3 (15’) | BK7 | 15 | 7.215 | 3.4 | 3.3 | 100% | 7.693 |
ZnTe4 (20’) | BK7 | 20 | 4.982 | 2.5 | 3 | 100% | 19.55 |
Sample | Bandgap Eg(eV) |
---|---|
ZnTe1 | 2.72 |
ZnTe2 | 2.26 |
ZnTe3 | 2.35 |
ZnTe4 | 2.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manica, D.; Antohe, V.-A.; Moldovan, A.; Pascu, R.; Iftimie, S.; Ion, L.; Suchea, M.P.; Antohe, Ş. Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications. Nanomaterials 2021, 11, 2286. https://doi.org/10.3390/nano11092286
Manica D, Antohe V-A, Moldovan A, Pascu R, Iftimie S, Ion L, Suchea MP, Antohe Ş. Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications. Nanomaterials. 2021; 11(9):2286. https://doi.org/10.3390/nano11092286
Chicago/Turabian StyleManica, Dumitru, Vlad-Andrei Antohe, Antoniu Moldovan, Rovena Pascu, Sorina Iftimie, Lucian Ion, Mirela Petruta Suchea, and Ştefan Antohe. 2021. "Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications" Nanomaterials 11, no. 9: 2286. https://doi.org/10.3390/nano11092286
APA StyleManica, D., Antohe, V. -A., Moldovan, A., Pascu, R., Iftimie, S., Ion, L., Suchea, M. P., & Antohe, Ş. (2021). Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications. Nanomaterials, 11(9), 2286. https://doi.org/10.3390/nano11092286