Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid following Exposure to Daphnia magna Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization
2.2. TEM Characterization
2.3. Culture of D. magna
2.4. Effects of Ternary Nanocomposite in D. magna’s DNA
2.5. DNA Extraction, Purification, and Quantification
2.6. Integrity of DNA for Electrophoresis
3. Results and Discussion
3.1. µ-Raman Analysis and DNA Quantification for Electrophoresis Tests
3.2. Rietveld Refinement Analysis
3.3. TG and UV-Vis Analysis
3.4. Morphological, Structural, and Chemical Characterization by TEM, EDS, and EELS
3.5. Mössbauer and VSM Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seitz, F.; Bundschuh, M.; Rosenfeldt, R.R.; Schulz, R. Nanoparticle Toxicity in Daphnia Magna Reproduction Studies: The Importance of Test Design. Aquat. Toxicol. 2013, 126, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Bownik, A.; Dudka, J.; Kowal, K.; Ślaska, B. Daphnia Magna Model in the Toxicity Assessment of Pharmaceuticals: A Review. Sci. Total Environ. 2021, 763, 143038. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test Guideline No. 211: Daphnia Magna Reproduction Test; Organisation for Economic Co-Operation and Development: Paris, France, 2012. [Google Scholar]
- Eads, B.D.; Andrews, J.; Colbourne, J.K. Ecological Genomics in Daphnia: Stress Responses and Environmental Sex Determination. Heredity 2008, 100, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.D.M.; Bartlett, N.J.; Lloyd, V.K. Daphnia as an Emerging Epigenetic Model Organism. Genet. Res. Int. 2011, 2012, 147892. [Google Scholar] [CrossRef] [Green Version]
- Biswas, P.; Wu, C.-Y. Nanoparticles and the Environment. J. Air Waste Manag. 2015, 55, 708–746. [Google Scholar] [CrossRef]
- Patil, S.S.; Shedbalkar, U.U.; Truskewycz, A.; Chopade, B.A.; Ball, A.S. Nanoparticles for Environmental Clean-up: A Review of Potential Risks and Emerging Solutions. Environ. Technol. Innov. 2016, 5, 10–21. [Google Scholar] [CrossRef]
- Howard, A.G. On the Challenge of Quantifying Man-Made Nanoparticles in the Aquatic Environment. J. Environ. Monit. 2010, 12, 135–142. [Google Scholar] [CrossRef]
- Ramos-Guivar, J.A.; Flores-Cano, D.A.; Passamani, E.C. Differentiating Nanomaghemite and Nanomagnetite and Discussing Their Importance in Arsenic and Lead Removal from Contaminated Effluents: A Critical Review. Nanomaterials 2021, 11, 2310. [Google Scholar] [CrossRef]
- Gupta, A.D.; Patil, S.Z. Book: Potential Environmental Impacts of Nanoparticles Used in Construction Industry. Ecol. Health Eff. Build. Mater. 2022, 159–183. [Google Scholar]
- Gökçe, D.; Köytepe, S.; Özcan, İ. Effects of Nanoparticles on Daphnia Magna Population Dynamics. Chem. Ecol. 2018, 34, 301–323. [Google Scholar] [CrossRef]
- Magro, M.; De Liguoro, M.; Franzago, E.; Baratella, D.; Vianello, F. The Surface Reactivity of Iron Oxide Nanoparticles as a Potential Hazard for Aquatic Environments: A Study on Daphnia Magna Adults and Embryos. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Baumann, J.; Köser, J.; Arndt, D.; Filser, J. The Coating Makes the Difference: Acute Effects of Iron Oxide Nanoparticles on Daphnia Magna. Sci. Total Environ. 2014, 484, 176–184. [Google Scholar] [CrossRef]
- Blinova, I.; Kanarbik, L.; Irha, N.; Kahru, A. Ecotoxicity of Nanosized Magnetite to Crustacean Daphnia Magna and Duckweed Lemna Minor. Hydrobiologia 2017, 798, 141–149. [Google Scholar] [CrossRef]
- Tamanaha-Vegas, C.A.; Zarria-Romero, J.Y.; Greneche, J.M.; Passamani, E.C.; Ramos-Guivar, J.A. Surface Magnetic Properties of a Ternary Nanocomposite and Its Ecotoxicological Properties in Daphnia Magna. Adv. Powder Technol. 2022, 33, 103395. [Google Scholar] [CrossRef]
- Match!—Phase Analysis Using Powder Diffraction-Version 3. Available online: http://www.crystalimpact.com/match/ (accessed on 1 December 2021).
- Canchanya-Huaman, Y.; Mayta-Armas, A.F.; Pomalaya-Velasco, J.; Bendezú-Roca, Y.; Guerra, J.A.; Ramos-Guivar, J.A. Strain and Grain Size Determination of CeO2 and TiO2 Nanoparticles: Comparing Integral Breadth Methods versus Rietveld, μ-Raman, and TEM. Nanomaterials 2021, 11, 2311. [Google Scholar] [CrossRef]
- Ocampo, Q.L.E.; Botero, M.; Fernando, L. Chapter Book: Measurements Population Growth and Fecundity of Daphnia Magna to Different Levels of Nutrients Under Stress Conditions. Aquaculture 2012, 241–268. [Google Scholar]
- Lawrence, S.G. Manual for the Culture of Selected Freshwater Invertebrates. Can. Spec. Publ. Fish. Aquat. Sci. 1981, 54, 169. [Google Scholar]
- Herman, H.; Andriani, Y.; Sahidin, A.; Hidayat, T.; Herawati, T. Culture of Daphnia Sp. (Crustacean-Cladocera): The Effect of Manure Variation on the Growth, Natality, and Mortality. IOP Conf. Ser. Earth Environ. Sci. 2018, 137, 012018. [Google Scholar] [CrossRef]
- Athanasio, C.G.; Chipman, J.K.; Viant, M.R.; Mirbahai, L. Optimisation of DNA Extraction from the Crustacean Daphnia. PeerJ 2016, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ries, A. Thesis: DNA Extraction and Microsatellite Amplification of Daphnia Pulicaria Resting Eggs: Analysis of Allele Frequencies Through Time. Dep. Honor. Proj. 2018, 88. [Google Scholar]
- Green, M.R.; Sambrook, J. Agarose Gel Electrophoresis. Cold Spring Harb. Protoc. 2019, 1, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.; Costumbrado, J.; Hsu, C.Y.; Kim, Y.H. Agarose Gel Electrophoresis for the Separation of DNA Fragments. J. Vis. Exp. 2012, 62, e3923. [Google Scholar] [CrossRef] [PubMed]
- Ritschar, S.; Bangalore Narayana, V.K.; Rabus, M.; Laforsch, C. Uncovering the Chemistry behind Inducible Morphological Defences in the Crustacean Daphnia Magna via Micro-Raman Spectroscopy. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.F.; He, Y.L.; Zhang, M.S.; Yin, Z.; Chen, Q. Raman Scattering Study on Anatase TiO2 Nanocrystals. J. Phys. Appl. Phys. 2000, 33, 912–916. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, M.; Chen, Q.; Yin, Z. Size and Phonon-Confinement Effects on Low-Frequency Raman Mode of Anatase TiO2 Nanocrystal. Phys. Lett. A 2005, 340, 220–227. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Lopes, F.N. Heated Goethite and Natural Hematite: Can Raman Spectroscopy Be Used to Differentiate Them? Vib. Spectrosc. 2007, 45, 117–121. [Google Scholar] [CrossRef]
- Ramos-Guivar, J.A.; Gonzalez-Gonzalez, J.C.; Litterst, F.J.; Passamani, E.C. Rietveld Refinement, μ-Raman, X-Ray Photoelectron, and Mössbauer Studies of Metal Oxide-Nanoparticles Growth on Multiwall Carbon Nanotubes and Graphene Oxide. Cryst. Growth Des. 2021, 21, 2128–2141. [Google Scholar] [CrossRef]
- Ramos Guivar, J.A.; Bustamante, D.A.; Gonzalez, J.C.; Sanches, E.A.; Morales, M.A.; Raez, J.M.; López-Muñoz, M.J.; Arencibia, A. Adsorption of Arsenite and Arsenate on Binary and Ternary Magnetic Nanocomposites with High Iron Oxide Content. Appl. Surf. Sci. 2018, 454, 87–100. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Green Reduction of Graphene Oxide by Aqueous Phytoextracts. Carbon N. Y. 2012, 50, 5331–5339. [Google Scholar] [CrossRef]
- Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar]
- Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carvajal, J. Study of Micro-Structural Effects by Powder Diffraction Using the Program FULLPROF. Lab. Léon Brillouin (CEA-CNRS) CEA/Saclay 2003, 91191. [Google Scholar]
- Popa, N.C. The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement. J. Appl. Crystallogr. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J.; Roisnel, T. Line Broadening Analysis Using Fullprof: Determination of Microstructural Properties. Mater. Sci. Forum 2004, 443–444, 123–126. [Google Scholar] [CrossRef]
- Nurdin, I.; Johan, M.R.; Yaacob, I.I.; Ang, B.C. Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension. Sci. World J. 2014, 2014, 589479. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhai, Y.; Wang, D.; Dong, S. Synthesis of Reduced Graphene Oxide-Anatase TiO2 Nanocomposite and Its Improved Photo-Induced Charge Transfer Properties. Nanoscale 2011, 3, 1640–1645. [Google Scholar] [CrossRef]
- Rehman, A.; Daud, A.; Farooq, M.; Shakir, I.; Agboola, P.O.; Ilyas, M.; Zulfiqar, S. Nanostructured Maghemite and Magnetite and Their Nanocomposites with Graphene Oxide for Photocatalytic Degradation of Methylene Blue. Mater. Chem. Phys. 2020, 256, 123752. [Google Scholar] [CrossRef]
- Checca, N.R.; Caraballo-Vivas, R.J.; Torrão, R.; Rossi, A.; Reis, M.S. Phase Composition and Growth Mechanisms of Half-Metal Heusler Alloy Produced by Pulsed Laser Deposition: From Core-Shell Nanoparticles to Amorphous Randomic Clusters. Mater. Chem. Phys. 2017, 196, 103–108. [Google Scholar] [CrossRef]
- Urbas, K.; Aleksandrzak, M.; Jedrzejczak, M.; Jedrzejczak, M.; Rakoczy, R.; Chen, X.; Mijowska, E. Chemical and Magnetic Functionalization of Graphene Oxide as a Route to Enhance Its Biocompatibility. Nanoscale Res. Lett. 2014, 9, 1–12. [Google Scholar] [CrossRef]
- Pecharromán, C.; González-Carreño, T.; Iglesias, J.E. The Infrared Dielectric Properties of Maghemite, γ-Fe2O3, from Reflectance Measurement on Pressed Powders. Phys. Chem. Miner. 1995, 22, 21–29. [Google Scholar] [CrossRef]
- Howard, C.J.; Sabine, T.M.; Dickson, F. Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallogr. Sect. B 1991, 47, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G. Oxidation State and Chemical Shift Investigation in Transition Metal Oxides by EELS. Ultramicroscopy 2012, 116, 24–33. [Google Scholar] [CrossRef]
- Zhang, W.; Stolojan, V.; Silva, S.R.P.; Wu, C.W. Raman, EELS and XPS Studies of Maghemite Decorated Multi-Walled Carbon Nanotubes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, V.; Obaidat, I.M.; Latiyan, S.; Jain, S.; Nayek, C.; Goankar, S.; AL-Akhras, M.A.; Al-Omari, I.A. Role of Interface Quality in Iron Oxide Core/Shell Nanoparticles on Heating Efficiency and Transverse Relaxivity. Mater. Express 2019, 9, 328–336. [Google Scholar] [CrossRef]
- Barman, A.; Saini, C.P.; Sarkar, P.K.; Bhattacharjee, G.; Bhattacharya, G.; Srivastava, S.; Satpati, B.; Kanjilal, D.; Ghosh, S.K.; Dhar, S.; et al. Resistive Switching Behavior in Oxygen Ion Irradiated TiO2−x Films. J. Phys. D Appl. Phys. 2018, 51, 065306. [Google Scholar] [CrossRef]
- Brydson, R.; Sauer, H.; Engel, W.; Thomass, J.M.; Zeitler, E.; Kosugi, N.; Kuroda, H. Electron Energy Loss and X-Ray Absorption Spectroscopy of Rutile and Anatase: A Test of Structural Sensitivity. J. Phys. Condens. Matter 1989, 1, 797–812. [Google Scholar] [CrossRef]
- Hund-Rinke, K.; Schlich, K.; Kühnel, D.; Hellack, B.; Kaminski, H.; Nickel, C. Grouping concept for metal and metal oxide nanomaterials with regard to their ecotoxicological effects on algae, daphnids and fish embryos. NanoImpact 2018, 9, 52–60. [Google Scholar] [CrossRef]
- Plachtová, P.; Medrikova, Z.; Zboril, R.; Tucek, J.; Varma, R.S.; Maršálek, B. Iron and iron oxide nanoparticles synthesized with green tea extract: Differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustain. Chem. Eng. 2018, 6, 8679–8687. [Google Scholar] [CrossRef]
Ternary Nanocomposite (0.55 mg mL−1) | Negative Control | |||||
---|---|---|---|---|---|---|
A1 | B1 | C1 | A2 | B2 | C2 | |
Concentration ng mL−1 | 60 | 30 | 15 | 60 | 30 | 15 |
Refinement Parameters | Ternary Nanocomposite | |
---|---|---|
γ-Fe2O3 | Anatase | |
8.356 | 3.787 | |
8.356 | 3.787 | |
8.356 | 9.515 | |
90 | 90 | |
90 | 90 | |
90 | 90 | |
583.4 (3) | 136.5 (2) | |
−0.306 (6) | −5.692 (4) | |
−0.260 (2) | 2.507 (8) | |
0.623 (1) | −1.834 (8) | |
1.191 (1) | −1.533 (6) | |
0.532 (7) | 0.634 (2) | |
0.087 (5) | ||
0.461 (4) | ||
2.142 (3) | ||
FWHM parameters | ||
U | 0.0041 | 4.3586 |
V | −0.0829 | −2.6837 |
W | 0.0311 | 0.9158 |
Average max strain | 16.3 (6) | 154.2 (0) |
Average size (nm) | 12.4 (6) | 11.7 (2) |
phase percentage (%) | 72.3 | 27.7 |
13.7 | ||
8.29 | ||
χ2 | 1.10 |
NPs | (nm) | (nm) | (nm) | s |
---|---|---|---|---|
γ-Fe2O3 | 14.31 | 11.53 | 7.02 | 1.59 |
TiO2 | 15.42 | 14.68 | 3.45 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Guivar, J.A.; Zarria-Romero, J.Y.; Canchanya-Huaman, Y.; Guerra, J.A.; Checca-Huaman, N.-R.; Castro-Merino, I.-L.; Passamani, E.C. Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid following Exposure to Daphnia magna Biomarkers. Nanomaterials 2022, 12, 1805. https://doi.org/10.3390/nano12111805
Ramos-Guivar JA, Zarria-Romero JY, Canchanya-Huaman Y, Guerra JA, Checca-Huaman N-R, Castro-Merino I-L, Passamani EC. Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid following Exposure to Daphnia magna Biomarkers. Nanomaterials. 2022; 12(11):1805. https://doi.org/10.3390/nano12111805
Chicago/Turabian StyleRamos-Guivar, Juan A., Jacquelyne Y. Zarria-Romero, Yamerson Canchanya-Huaman, Jorge Andres Guerra, Noemi-Raquel Checca-Huaman, Isabel-Liz Castro-Merino, and Edson C. Passamani. 2022. "Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid following Exposure to Daphnia magna Biomarkers" Nanomaterials 12, no. 11: 1805. https://doi.org/10.3390/nano12111805
APA StyleRamos-Guivar, J. A., Zarria-Romero, J. Y., Canchanya-Huaman, Y., Guerra, J. A., Checca-Huaman, N. -R., Castro-Merino, I. -L., & Passamani, E. C. (2022). Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid following Exposure to Daphnia magna Biomarkers. Nanomaterials, 12(11), 1805. https://doi.org/10.3390/nano12111805