Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis, Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure, Morphology, and Conductive Properties of Moss-like Hierarchical Structure Self-Assembled by Na2Ti3O7 Nanotubes
3.2. Electrochemical Performance in Sodium Batteries of Self-Assembled Moss-like Hierarchical Architecture Constructed by Na2Ti3O7 Nanotubes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moshnikov, V.A.; Gracheva, I.E.; Kuznezov, V.V.; Maximov, A.I.; Karpova, S.S.; Ponomareva, A.A. Hierarchical Nanostructured Semiconductor Porous Materials for Gas Sensors. J. Non-Cryst. Solids 2010, 356, 2020–2025. [Google Scholar] [CrossRef]
- Xu, Y. Hierarchical Materials. In Modern Inorganic Synthetic Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 545–574. [Google Scholar]
- Noh, J.; Kwon, S.-H.; Park, S.; Kim, K.-K.; Yoon, Y.-J. TiO2 Nanorods and Pt Nanoparticles under a UV-LED for an NO2 Gas Sensor at Room Temperature. Sensors 2021, 21, 1826. [Google Scholar] [CrossRef] [PubMed]
- Kuryavyi, V.G.; Ustinov, A.Y.; Opra, D.P.; Zverev, G.A.; Kaidalova, T.A. Composite Containing Nanosized Titanium Oxide and Oxyfluoride and Carbon Synthesized in Plasma of Pulse High-Voltage Discharge. Mater. Lett. 2014, 137, 398–400. [Google Scholar] [CrossRef]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef] [PubMed]
- Dell’Edera, M.; Lo Porto, C.; De Pasquale, I.; Petronella, F.; Curri, M.L.; Agostiano, A.; Comparelli, R. Photocatalytic TiO2-based coatings for environmental applications. Catal. Today 2021, 380, 62–83. [Google Scholar] [CrossRef]
- Murugadoss, S.; Mülhopt, S.; Diabaté, S.; Ghosh, M.; Paur, H.-R.; Stapf, D.; Weiss, C.; Hoet, P.H. Agglomeration State of Titanium-Dioxide (TiO2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface. Nanomaterials 2021, 11, 3226. [Google Scholar] [CrossRef]
- Chen, Z.; Han, S.; Zhou, S.; Feng, H.; Liu, Y.; Jia, G. Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact 2020, 18, 100224. [Google Scholar] [CrossRef]
- Wu, X. Applications of Titanium Dioxide Materials. In Titanium Dioxide; IntechOpen: London, UK, 2021. [Google Scholar]
- Qiu, G.; Guo, Y. Current Situation and Development Trend of Titanium Metal Industry in China. Int. J. Miner. Metall. Mater. 2022, 29, 599–610. [Google Scholar] [CrossRef]
- El Khalloufi, M.; Drevelle, O.; Soucy, G. Titanium: An Overview of Resources and Production Methods. Minerals 2021, 11, 1425. [Google Scholar] [CrossRef]
- Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Chen, C.; Agrawal, R.; Wang, C. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries. Nanomaterials 2015, 5, 1469–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosa, J.; Aparicio, M. Sol-Gel Synthesis of Nanocrystalline Mesoporous Li4Ti5O12 Thin-Films as Anodes for Li-Ion Microbatteries. Nanomaterials 2020, 10, 1369. [Google Scholar] [CrossRef]
- Stenina, I.A.; Sobolev, A.N.; Kulova, T.L.; Yaroslavtsev, A.B. Effect of High-Molecular-Weight Carbon Sources on the Electrochemical Properties of Li4Ti5O12/C Composite Materials. Inorg. Mater. 2022, 58, 154–159. [Google Scholar] [CrossRef]
- Sato, T.; Yoshikawa, K.; Zhao, W.; Kobayashi, T.; Rajendra, H.B.; Yonemura, M.; Yabuuchi, N. Efficient Stabilization of Na Storage Reversibility by Ti Integration into O′3-Type NaMnO2. Energy Mater. Adv. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, J.; Yang, Y.; Zhao, J.; Rong, J.; Li, H.; Niu, L. Design Advanced Porous Polyaniline-PEDOT:PSS Composite as High Performance Cathode for Sodium Ion Batteries. Compos. Commun. 2021, 24, 100674. [Google Scholar] [CrossRef]
- Fatima, H.; Zhong, Y.; Wu, H.; Shao, Z. Recent Advances in Functional Oxides for High Energy Density Sodium-Ion Batteries. Mater. Rep. Energy 2021, 1, 100022. [Google Scholar] [CrossRef]
- Park, G.D.; Cho, J.S.; Kang, Y.C. Sodium-Ion Storage Properties of Nickel Sulfide Hollow Nanospheres/Reduced Graphene Oxide Composite Powders Prepared by a Spray Drying Process and the Nanoscale Kirkendall Effect. Nanoscale 2015, 7, 16781–16788. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, Q.; Hu, C.; Huang, Y.; Wu, W.; Yu, M.; Sun, D.; Luo, W. Copper Fluoride as a Low-Cost Sodium-Ion Battery Cathode with High Capacity. Chin. Chem. Lett. 2022, 33, 1435–1438. [Google Scholar] [CrossRef]
- Kulova, T. Causes of Germanium Phosphide Degradation under Prolonged Cycling. EIS Study. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Kulova, T.L.; Skundin, A.M. Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ. J. Electrochem. 2021, 57, 1105–1137. [Google Scholar] [CrossRef]
- Park, G.D.; Kim, J.H.; Park, S.-K.; Kang, Y.C. MoSe2 Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances. ACS Appl. Mater. Interfaces 2017, 9, 10673–10683. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Garcia-Araez, N.; Hector, A.L. Synthesis of Vanadium Nitride–Hard Carbon Composites from Cellulose and Their Performance for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 4286–4294. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, W.; Guerfi, A.; Kim, C.; Zaghib, K. Roles of Ti in Electrode Materials for Sodium-Ion Batteries. Front. Energy Res. 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, Y.; Wu, X.; Wang, J.; Fu, L.; Zhu, Y.; Wu, Y.; Liu, X. Advances of TiO2 as Negative Electrode Materials for Sodium-Ion Batteries. Adv. Mater. Technol. 2018, 3, 1800004. [Google Scholar] [CrossRef]
- Doeff, M.M.; Cabana, J.; Shirpour, M. Titanate Anodes for Sodium Ion Batteries. J. Inorg. Organomet. Polym. Mater. 2014, 24, 5–14. [Google Scholar] [CrossRef]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Gerasimenko, A.V.; Ziatdinov, A.M.; Sokolov, A.A.; Podgorbunsky, A.B.; Ustinov, A.Y.; Kuryavyi, V.G.; Mayorov, V.Y.; et al. Enhancing Lithium and Sodium Storage Properties of TiO2 (B) Nanobelts by Doping with Nickel and Zinc. Nanomaterials 2021, 11, 1703. [Google Scholar] [CrossRef]
- Stenina, I.A.; Kozina, L.D.; Kulova, T.L.; Skundin, A.M.; Chekannikov, A.A.; Yaroslavtsev, A.B. Synthesis and Ionic Conduction of Sodium Titanate Na2Ti3O7. Russ. J. Inorg. Chem. 2016, 61, 1235–1240. [Google Scholar] [CrossRef]
- Dynarowska, M.; Kotwiński, J.; Leszczynska, M.; Marzantowicz, M.; Krok, F. Ionic Conductivity and Structural Properties of Na2Ti3O7 Anode Material. Solid State Ionics 2017, 301, 35–42. [Google Scholar] [CrossRef]
- Zima, T.M.; Baklanova, N.I.; Utkin, A.V. Hydrothermal Synthesis of a Nanostructured TiO2-Based Material in the Presence of Chitosan. Inorg. Mater. 2012, 48, 821–826. [Google Scholar] [CrossRef]
- Kim, G.-S.; Kim, Y.-S.; Seo, H.-K.; Shin, H.-S. Hydrothermal Synthesis of Titanate Nanotubes Followed by Electrodeposition Process. Korean J. Chem. Eng. 2006, 23, 1037–1045. [Google Scholar] [CrossRef]
- Jing, M.; Li, J.; Han, C.; Yao, S.; Zhang, J.; Zhai, H.; Chen, L.; Shen, X.; Xiao, K. Electrospinning Preparation of Oxygen-Deficient Nano TiO2-x/Carbon Fibre Membrane as a Self-Standing High Performance Anode for Li-Ion Batteries. R. Soc. Open Sci. 2017, 4, 170323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Podgorbunsky, A.B.; Sokolov, A.A.; Ustinov, A.Y.; Kuryavyi, V.G.; Mayorov, V.Y.; Zheleznov, V.V. Doping of Titania with Manganese for Improving Cycling and Rate Performances in Lithium-Ion Batteries. Chem. Phys. 2020, 538, 110864. [Google Scholar] [CrossRef]
- Ni, J.; Fu, S.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering. Adv. Energy Mater. 2016, 6, 1502568. [Google Scholar] [CrossRef]
- An, Y.; Li, Z.; Xiang, H.; Huang, Y.; Shen, J. First-Principle Calculations for Electronic Structure and Bonding Properties in Layered Na2Ti3O7. Open Phys. 2011, 9, 1488–1492. [Google Scholar] [CrossRef]
- Araújo-Filho, A.A.; Silva, F.L.R.; Righi, A.; da Silva, M.B.; Silva, B.P.; Caetano, E.W.S.; Freire, V.N. Structural, Electronic and Optical Properties of Monoclinic Na2Ti3O7 from Density Functional Theory Calculations: A Comparison with XRD and Optical Absorption Measurements. J. Solid State Chem. 2017, 250, 68–74. [Google Scholar] [CrossRef]
- Zhang, Z.; Goodall, J.B.M.; Brown, S.; Karlsson, L.; Clark, R.J.H.; Hutchison, J.L.; Rehman, I.U.; Darr, J.A. Continuous Hydrothermal Synthesis of Extensive 2D Sodium Titanate (Na2Ti3O7) Nano-Sheets. Dalt. Trans. 2010, 39, 711–714. [Google Scholar] [CrossRef]
- Garay-Rodríguez, L.F.; Murcia-López, S.; Andreu, T.; Moctezuma, E.; Torres-Martínez, L.M.; Morante, J.R. Photocatalytic Hydrogen Evolution Using Bi-Metallic (Ni/Pt) Na2Ti3O7 Whiskers: Effect of the Deposition Order. Catalysts 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.L.; Chen, Q.; Wang, R.H.; Peng, L.-M. Synthesis and Characterization of K2Ti6O13 Nanowires. Chem. Phys. Lett. 2003, 376, 726–731. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Yu, X.; Hu, Y.-S.; Li, H.; Yang, X.-Q.; Chen, L. Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries. Adv. Energy Mater. 2013, 3, 1186–1194. [Google Scholar] [CrossRef]
- Fu, S.; Ni, J.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation Driven Conductive Na2Ti3O7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. Nano Lett. 2016, 16, 4544–4551. [Google Scholar] [CrossRef]
- Vithal, M.; Rama Krishna, S.; Ravi, G.; Palla, S.; Velchuri, R.; Pola, S. Synthesis of Cu2+ and Ag+ Doped Na2Ti3O7 by a Facile Ion-Exchange Method as Visible-Light-Driven Photocatalysts. Ceram. Int. 2013, 39, 8429–8439. [Google Scholar] [CrossRef]
- Singh, M.; Goyal, M.; Devlal, K. Size and Shape Effects on the Band Gap of Semiconductor Compound Nanomaterials. J. Taibah Univ. Sci. 2018, 12, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Zhao, H.; Pang, W.K.; Yin, Z.; Zhou, B.; He, G.; Guo, Z.; Du, Y. Lanthanide Doping Induced Electrochemical Enhancement of Na2Ti3O7 Anodes for Sodium-Ion Batteries. Chem. Sci. 2018, 9, 3421–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-C.; Zhang, N.; Liu, Y.-C.; Wang, Y.-J.; Chen, J. In-Situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries. Acta Phys.-Chim. Sin. 2016, 32, 349–355. [Google Scholar] [CrossRef]
- Ko, J.S.; Doan-Nguyen, V.V.T.; Kim, H.-S.; Muller, G.A.; Serino, A.C.; Weiss, P.S.; Dunn, B.S. Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode. ACS Appl. Mater. Interfaces 2017, 9, 1416–1425. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Chen, Z.; He, C.; Su, J.; Wen, Y. A Mild Process for the Synthesis of Na2Ti3O7 as an Anode Material for Sodium-Ion Batteries in Deep Eutectic Solvent. J. Mater. Sci. Mater. Electron. 2019, 30, 8422–8427. [Google Scholar] [CrossRef]
- Rudola, A.; Sharma, N.; Balaya, P. Introducing a 0.2 V Sodium-Ion Battery Anode: The Na2Ti3O7 to Na3−xTi3O7 Pathway. Electrochem. Commun. 2015, 61, 10–13. [Google Scholar] [CrossRef]
- Zukalová, M.; Pitňa Lásková, B.; Mocek, K.; Zukal, A.; Bouša, M.; Kavan, L. Electrochemical Performance of Sol-Gel-Made Na2Ti3O7 Anode Material for Na-Ion Batteries. J. Solid State Electrochem. 2018, 22, 2545–2552. [Google Scholar] [CrossRef]
- Kuz’mina, A.A.; Kudryashova, Y.O.; Kulova, T.L.; Skundin, A.M.; Chekannikov, A.A. Degradation Mechanism of Electrodes from Sodium Titanate at Cycling. Electrochem. Energy 2019, 19, 148–156. [Google Scholar] [CrossRef]
- Wang, W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Microspheric Na2Ti3O7 Consisting of Tiny Nanotubes: An Anode Material for Sodium-Ion Batteries with Ultrafast Charge–Discharge Rates. Nanoscale 2013, 5, 594–599. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, L.; Gao, Y.; Zhang, Q.; Zhang, C.; Sun, C.; Chen, X. Effects of F-Doping on the Electrochemical Performance of Na2Ti3O7 as an Anode for Sodium-Ion Batteries. Materials 2018, 11, 2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubouis, N.; Serva, A.; Salager, E.; Deschamps, M.; Salanne, M.; Grimaud, A. The Fate of Water at the Electrochemical Interfaces: Electrochemical Behavior of Free Water Versus Coordinating Water. J. Phys. Chem. Lett. 2018, 9, 6683–6688. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Song, J.; Dai, K.; Zhuo, Z.; Wray, L.A.; Liu, G.; Shen, Z.; Zeng, R.; Lu, Y.; Yang, W. Modification of Transition-Metal Redox by Interstitial Water in Hexacyanometalate Electrodes for Sodium-Ion Batteries. J. Am. Chem. Soc. 2017, 139, 18358–18364. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, X.; Cui, S.; Shi, Q.; Mi, L.; Chen, W. From α-NaMnO2 to Crystal Water Containing Na-Birnessite: Enhanced Cycling Stability for Sodium-Ion Batteries. Cryst. Eng. Commun. 2016, 18, 3136–3141. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, R.; Mushtaq, M.; Guo, W.; Yao, M.; Feng, J. Performance Modulation through Synergetic Effect of Interstitial Water with Ti-Substitution for Sodium Ion Battery Cathode. Chem. Lett. 2019, 48, 670–673. [Google Scholar] [CrossRef]
- Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J.B. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. J. Am. Chem. Soc. 2015, 137, 2658–2664. [Google Scholar] [CrossRef]
- Ding, M. Preparation of Thin-Walled Na2Ti3O7 Nanotube and Its Electrochemical Properties. Int. J. Electrochem. Sci. 2021, 16. [Google Scholar] [CrossRef]
- Zhou, Z.; Xiao, H.; Zhang, F.; Zhang, X.; Tang, Y. Solvothermal Synthesis of Na2Ti3O7 nanowires Embedded in 3D Graphene Networks as an Anode for High-Performance Sodium-Ion Batteries. Electrochim. Acta 2016, 211, 430–436. [Google Scholar] [CrossRef]
- Song, T.; Ye, S.; Liu, H.; Wang, Y.G. Self-Doping of Ti3+ into Na2Ti3O7 increases Both Ion and Electron Conductivity as a High-Performance Anode Material for Sodium-Ion Batteries. J. Alloys Compd. 2018, 767, 820–828. [Google Scholar] [CrossRef]
- Zhong, W.; Tao, M.; Tang, W.; Gao, W.; Yang, T.; Zhang, Y.; Zhan, R.; Bao, S.-J.; Xu, M. MXene-Derivative Pompon-like Na2Ti3O7@C Anode Material for Advanced Sodium Ion Batteries. Chem. Eng. J. 2019, 378, 122209. [Google Scholar] [CrossRef]
- Chen, S.; Gao, L.; Zhang, L.; Yang, X. Mesoporous Na2Ti3O7 Microspheres with Rigid Framework as Anode Materials for High-Performance Sodium Ion Batteries. Ionics 2019, 25, 2211–2219. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Reddy, P.A.K.; NagaJyothi, P.C.; Shim, J.; Byon, C. Hydrothermally Synthesized Na2Ti3O7 Nanotube–V2O5 Heterostructures with Improved Visible Photocatalytic Degradation and Hydrogen Evolution—Its Photocorrosion Suppression. J. Alloys Compd. 2018, 740, 574–586. [Google Scholar] [CrossRef]
- Hayashi, H.; Nakamura, T.; Ebina, T. Hydrothermal Synthesis of Sodium Titanate Nanosheets Using a Supercritical Flow Reaction System. J. Ceram. Soc. Japan 2016, 124, 74–78. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opra, D.P.; Neumoin, A.I.; Sinebryukhov, S.L.; Podgorbunsky, A.B.; Kuryavyi, V.G.; Mayorov, V.Y.; Ustinov, A.Y.; Gnedenkov, S.V. Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis, Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries. Nanomaterials 2022, 12, 1905. https://doi.org/10.3390/nano12111905
Opra DP, Neumoin AI, Sinebryukhov SL, Podgorbunsky AB, Kuryavyi VG, Mayorov VY, Ustinov AY, Gnedenkov SV. Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis, Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries. Nanomaterials. 2022; 12(11):1905. https://doi.org/10.3390/nano12111905
Chicago/Turabian StyleOpra, Denis P., Anton I. Neumoin, Sergey L. Sinebryukhov, Anatoly B. Podgorbunsky, Valery G. Kuryavyi, Vitaly Yu. Mayorov, Alexander Yu. Ustinov, and Sergey V. Gnedenkov. 2022. "Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis, Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries" Nanomaterials 12, no. 11: 1905. https://doi.org/10.3390/nano12111905
APA StyleOpra, D. P., Neumoin, A. I., Sinebryukhov, S. L., Podgorbunsky, A. B., Kuryavyi, V. G., Mayorov, V. Y., Ustinov, A. Y., & Gnedenkov, S. V. (2022). Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis, Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries. Nanomaterials, 12(11), 1905. https://doi.org/10.3390/nano12111905