Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Preparation and Testing
2.2. Device Fabrication
3. Results
3.1. Improved Device Performance
3.2. Characterization of Thin Film Structure
3.3. Evidence of Pt Occupying Positions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Mazzarello, R.; Wuttig, M.; Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 2019, 4, 150–168. [Google Scholar] [CrossRef]
- Ding, K.Y.; Wang, J.J.; Zhou, Y.X.; Tian, H.; Lu, L.; Mazzarello, R.; Jia, C.L.; Zhang, W.; Rao, F.; Ma, E. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 2019, 366, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Big Data Needs a Hardware Revolution. Available online: https://www.nature.com/articles/d41586-018-01683-1 (accessed on 15 May 2022).
- Rao, F.; Ding, K.Y.; Zhou, Y.X.; Zheng, Y.H.; Xia, M.J.; Lv, S.L.; Song, Z.T.; Feng, S.L.; Ronneberger, I.; Mazzarello, R.; et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 2017, 358, 1423–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Song, W.; Konze, P.M.; Li, T.; Gault, B.; Chen, X.; Shen, J.; Lv, S.; Song, Z.; Wuttig, M.; et al. Direct atomic insight into the role of dopants in phase-change materials. Nat. Commun. 2019, 10, 3525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Song, W.-X.; Xin, T.; Song, Z. Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials. Nat. Commun. 2021, 12, 6473. [Google Scholar] [CrossRef]
- Xue, Y.; Cheng, Y.; Zheng, Y.; Yan, S.; Song, W.; Lv, S.; Song, S.; Song, Z. Phase change memory based on Ta–Sb–Te alloy –Towards a universal memory. Mater. Today Phys. 2020, 15, 100266. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, L.; Song, Z.; Cheng, Y.; Rao, F.; Ren, K.; Song, S.; Liu, B.; Feng, S. Nitrogen-doped Sb-rich Si–Sb–Te phase-change material for high-performance phase-change memory. Acta Mater. 2013, 61, 7324–7333. [Google Scholar] [CrossRef]
- Simpson, R.E. The changing phase of data storage. Nat. Nanotechnol. 2019, 14, 643–644. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef]
- Xue, Y.; Song, S.; Chen, X.; Yan, S.; Lv, S.; Xin, T.; Song, Z. Enhanced performance of phase change memory by grain size reduction. J. Mater. Chem. C 2022, 10, 3585–3592. [Google Scholar] [CrossRef]
- Njoroge, W.K.; Woltgens, H.W.; Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A-Vac. Surf. Film. 2002, 20, 230–233. [Google Scholar] [CrossRef]
- Guo, T.Q.; Song, S.N.; Song, Z.T.; Ji, X.L.; Xue, Y.; Chen, L.L.; Cheng, Y.; Liu, B.; Wu, L.C.; Qi, M.; et al. SiC-Doped Ge2Sb2Te5 Phase-Change Material: A Candidate for High-Density Embedded Memory Application. Adv. Electron. Mater. 2018, 4, 1800083. [Google Scholar] [CrossRef]
- Fong, S.W.; Neumann, C.M.; Wong, H.S.P. Phase-Change Memory—Towards a Storage-Class Memory. IEEE Trans. Electron. Devices 2017, 64, 4374–4385. [Google Scholar] [CrossRef]
- Wang, Z.R.; Wu, H.Q.; Burr, G.W.; Hwang, C.S.; Wang, K.L.; Xia, Q.F.; Yang, J.J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195. [Google Scholar] [CrossRef]
- Loke, D.; Lee, T.H.; Wang, W.J.; Shi, L.P.; Zhao, R.; Yeo, Y.C.; Chong, T.C.; Elliott, S.R. Breaking the Speed Limits of Phase-Change Memory. Science 2012, 336, 1566–1569. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.S.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Park, H.; Kim, D.; Lim, H.; Lee, C.; Han, J.H.; Kwon, Y.K.; Cho, M.H. Ultra-low Energy Phase Change Memory with Improved Thermal Stability by Tailoring the Local Structure through Ag Doping. ACS Appl. Mater. Interfaces 2020, 12, 37285–37294. [Google Scholar] [CrossRef]
- Cubukcu, M.; Venkateshvaran, D.; Wittmann, A.; Wang, S.-J.; Di Pietro, R.; Auffret, S.; Vila, L.; Wunderlich, J.; Sirringhaus, H. Electrical nucleation and detection of single 360° homochiral Néel domain walls measured using the anomalous Nernst effect. Appl. Phys. Lett. 2018, 112, 262409. [Google Scholar] [CrossRef]
- Wang, W.J.; Loke, D.; Law, L.T.; Shi, L.P.; Zhao, R.; Li, M.H.; Chen, L.L.; Yang, H.X.; Yeo, Y.C.; Adeyeye, A.O.; et al. Engineering Grains of Ge2Sb2Te5 for Realizing Fast-Speed, Low-Power, and Low-Drift Phase-Change Memories with Further Multilevel Capabilities. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–13 December 2012. [Google Scholar]
- Cheng, Y.; Song, Z.T.; Gu, Y.F.; Song, S.N.; Rao, F.; Wu, L.C.; Liu, B.; Feng, S.L. Influence of silicon on the thermally-induced crystallization process of Si-Sb4Te phase change materials. Appl. Phys. Lett. 2011, 99, 261914. [Google Scholar] [CrossRef]
- Penn, R.L.; Banfield, J.F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Song, Z.T.; Ren, K.; Zhou, X.L.; Cheng, Y.; Wu, L.C.; Liu, B. Si-Sb-Te materials for phase change memory applications. Nanotechnology 2011, 22, 145702. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.L.; Kalikka, J.; Ji, X.L.; Wu, L.C.; Song, Z.T.; Simpson, R.E. Phase-Change Memory Materials by Design: A Strain Engineering Approach. Adv. Mater. 2016, 28, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, T.Q.; Liu, G.Y.; Li, T.; Lv, S.L.; Song, S.N.; Cheng, Y.; Song, W.X.; Ren, K.; Song, Z.T. Sc-Centered Octahedron Enables High-Speed Phase Change Memory with Improved Data Retention and Reduced Power Consumption. ACS Appl. Mater. Interfaces 2019, 11, 10848–10855. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Zhu, M.; Wang, Y.; Song, Z.; Rao, F.; Wu, L.; Cheng, Y.; Song, S. Ti-Sb-Te alloy: A candidate for fast and long-life phase-change memory. ACS Appl. Mater. Interfaces 2015, 7, 7627–7634. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, L.C.; Song, Z.T.; Rao, F.; Cai, D.L.; Peng, C.; Zhou, X.L.; Ren, K.; Song, S.N.; Liu, B.; et al. Ti10Sb60Te30 for phase change memory with high-temperature data retention and rapid crystallization speed. Appl. Phys. Lett. 2012, 100, 122101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Zhao, J.; Sun, H.; Song, Z.; Xue, Y.; Li, J.; Song, S. Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory. Nanomaterials 2022, 12, 1996. https://doi.org/10.3390/nano12121996
Qiao Y, Zhao J, Sun H, Song Z, Xue Y, Li J, Song S. Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory. Nanomaterials. 2022; 12(12):1996. https://doi.org/10.3390/nano12121996
Chicago/Turabian StyleQiao, Yang, Jin Zhao, Haodong Sun, Zhitang Song, Yuan Xue, Jiao Li, and Sannian Song. 2022. "Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory" Nanomaterials 12, no. 12: 1996. https://doi.org/10.3390/nano12121996
APA StyleQiao, Y., Zhao, J., Sun, H., Song, Z., Xue, Y., Li, J., & Song, S. (2022). Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory. Nanomaterials, 12(12), 1996. https://doi.org/10.3390/nano12121996