Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pulsed Laser Doping of p-Si Wafers with Phosphorous
2.2. Preparation of a-MoSx/NP-Mo//n+p-Si Photocathodes
2.3. Structural, Chemical, and Energy Band Alignment Studies
2.4. Photoelectrochemical Measurements of HER
3. Results
3.1. The Surface Morphology and Structure of Laser-Doped n+p-Si
3.2. The Composition and Structure of MoSx/NP-Mo Films on n+p-Si
3.2.1. The 4 nm Thick Film
3.2.2. The 20 nm Thick Film
3.3. Performance of a-MoSx/NP-Mo//n+p-Si Photocathodes in PEC HER
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Abrams, B.L.; Vesborg, P.; Björketun, M.E.; Herbst, K.; Bech, L.; Setti, A.M.; Damsgaard, C.D.; Pedersen, T.; Hansen, O.; et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 2011, 10, 434–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Guio, G.G.; Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benck, J.D.; Lee, S.C.; Fong, K.D.; Kibsgaard, J.; Sinclair, R.; Jaramillo, T.F. Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials. Adv. Energy Mater. 2014, 4, 1400739. [Google Scholar] [CrossRef]
- Standing, A.; Assali, S.; Gao, L.; Verheijen, M.A.; Van Dam, D.; Cui, Y.; Notten, P.; Haverkort, J.; Bakkers, E. Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 2015, 6, 7824. [Google Scholar] [CrossRef] [Green Version]
- Romanov, R.; Fominski, V.; Demin, M.; Fominski, D.; Rubinkovskaya, O.; Novikov, S.; Volkov, V.; Natalia Doroshina, N. Application of pulsed laser deposition in the preparation of a promising MoSx/WSe2/C(B) photocathode for photo-assisted electrochemical hydrogen evolution. Nanomaterials 2021, 11, 461. [Google Scholar] [CrossRef]
- Baloglou, A.; Plattner, M.; Oncak, M.; Grutza, M.; Kurz, P.; Beyer, M.K. [Mo3S13]2− as a Model System for Hydrogen Evolution Catalysis by MoSx: Probing Protonation Sites in the Gas Phase by Infrared Multiple Photon Dissociation Spectroscopy. Angew. Chem. Int. Ed. 2021, 60, 5074–5077. [Google Scholar] [CrossRef]
- Ting, L.R.L.; Deng, Y.; Ma, L.; Zhang, Y.-J.; Peterson, A.A.; Yeo, B.S. Catalytic Activities of Sulfur Atoms in Amorphous Molybdenum Sulfide for the Electrochemical Hydrogen Evolution Reaction. ACS Catal. 2016, 6, 861. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, L.; Gao, M.; Chen, X.; Zhou, W.; Ma, C.; Wu, L.; Zhu, J.; Meng, X.; Hu, J.; et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 2020, 11, 3315. [Google Scholar] [CrossRef]
- Fan, R.; Mao, J.; Yin, Z.; Jie, J.; Dong, W.; Fang, L.; Zheng, F.; Shen, M. Efficient and Stable Silicon Photocathodes Coated with a Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production. ACS Appl. Mater. Interfaces 2017, 9, 6123–6129. [Google Scholar] [CrossRef]
- Choi, S.; Kim, C.; Lee, J.Y.; Lee, T.H.; Kwon, K.C.; Kang, S.; Lee, S.A.; Choi, K.S.; Suh, J.M.; Hong, K.; et al. Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. Chem. Eng. J. 2021, 418, 129369. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, S.; Li, Q.-H.; Wu, X.; Zhang, J.; Zhang, H.; Zhang, J. Vertically Aligned MoS2 with In-Plane Selectively Cleaved Mo–S Bond for Hydrogen Production. Nano Lett. 2021, 4, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Tian, F.; Li, M.; Liu, Y.; Sheng, J.; Weiwei Yang, W.; Yu, Y.; Hou, Y. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816. [Google Scholar] [CrossRef]
- Gaur, A.; Stehle, M.; Serrer, M.-A.; Stummann, M.Z.; Fontaine, C.L.; Briois, V.; Grunwaldt, J.-D.; Høj, M. Using Transient XAS to Detect Minute Levels of Reversible S-O Exchange at the Active Sites of MoS2-Based Hydrotreating Catalysts: Effect of Metal Loading, Promotion, Temperature, and Oxygenate Reactant. ACS Catal. 2022, 12, 633–647. [Google Scholar] [CrossRef]
- Chen, S.; Pan, Y. Noble metal interlayer-doping enhances the catalytic activity of 2H–MoS2 from first-principles investigations. Int. J. Hydrogen Energy 2021, 46, 21040–21049. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H.; Jin, J.; Li, Y.; Feng, T.; Wang, W.; Dong, B.; Cao, L. An effective photocatalytic hydrogen evolution strategy based on tunable band gap (CuIn)xZn2(1−x)S2 combined with amorphous molybdenum sulphide. New J. Chem. 2021, 45, 7278–7284. [Google Scholar] [CrossRef]
- Jena, A.; Chen, C.-J.; Chang, H.; Hu, S.-F.; Liu, R.-S. Comprehensive view on recent developments in hydrogen evolution using MoS2 on a Si photocathode: From electronic to electrochemical aspects. J. Mater. Chem. A 2021, 9, 3767–3785. [Google Scholar] [CrossRef]
- Gultom, N.S.; Kuo, D.-H.; Abdullah, H.; Hsu, C.-N. Fabrication of an Ag2S-MoSx/MoNiAg film electrode for efficient electrocatalytic hydrogen evolution in alkaline solution. Mater. Today Energy 2021, 21, 100768. [Google Scholar] [CrossRef]
- Benck, J.D.; Chen, Z.; Kuritzky, L.Y.; Forman, A.J.; Jaramillo, T.F. Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catal. 2012, 2, 1916–1923. [Google Scholar] [CrossRef]
- Tang, M.L.; Grauer, D.C.; Lassalle-Kaiser, B.; Yachandra, V.K.; Amirav, L.; Long, J.R.; Yano, J.; Alivisatos, A.P. The Origin of High Activity of Amorphous MoS2 in the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2011, 50, 10203–10207. [Google Scholar] [CrossRef]
- Merki, D.; Fierro, S.; Vrubel, H.; Hu, X.L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.D.; Pramana, S.S.; Kale, V.S.; Nguyen, M.; Chiam, S.Y.; Batabyal, S.K.; Wong, L.H.; Barber, J.; Loo, J. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Chem. Eur. J. 2012, 18, 13994–13999. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Cui, Y.; Wang, J.; Cavalli, A.; Standing, A.; Vu, T.; Verheijen, M.; Haverkort, J.; Bakkers, E.; Notten, P. Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts. Nano Lett. 2014, 14, 3715–3719. [Google Scholar] [CrossRef] [PubMed]
- AslanaI, E.; Patirb, H. Catalysis of hydrogen evolution reaction by in situ electrodeposited amorphous molybdenum sulfide at soft interfaces. Mater. Today Energy 2021, 21, 100742. [Google Scholar] [CrossRef]
- Mabayoje, O.; Liu, Y.; Wang, M.; Shoola, A.; Ebrahim, A.M.; Frenkel, A.I.; Mullins, C.B. Electrodeposition of MoSx Hydrogen Evolution Catalysts from Sulfur-Rich Precursors. ACS Appl. Mater. Interfaces 2019, 11, 32879–32886. [Google Scholar] [CrossRef]
- Zhanga, D.; Wang, F.; Fan, X.; Zhao, W.; Cui, M.; Li, X.; Liang, R.; Ou, Q.; Zhang, S. Fabrication of amorphous molybdenum sulfide/nitrogen-doped reduced graphene oxide nanocomposites with a tailored composition and hydrogen evolution activity via plasma treatment. Carbon 2022, 187, 386–395. [Google Scholar] [CrossRef]
- Donley, M.S.; Murray, P.T.; Barber, S.A.; Haas, T.W. Deposition and properties of MoS2 thin films grown by pulsed laser evaporation. Surf. Coat. Technol. 1988, 36, 329–340. [Google Scholar] [CrossRef]
- Walck, S.D.; Zabinski, J.S.; Donley, M.S.; Bultman, J.E. Evolution of surface topography in pulsed-laser-deposited thin films of MoS2. Surf. Coat. Technol. 1993, 62, 412–416. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Markeev, A.M.; Nevolin, V.N.; Prokopenko, V.B.; Vrublevski, A.R. Pulsed laser deposition of MoSx films in a buffer gas atmosphere. Thin Solid Films 1994, 248, 240–246. [Google Scholar] [CrossRef]
- Wang, R.; Sun, P.; Wang, H.; Wang, X. Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction. Electrochim. Acta 2017, 258, 876–882. [Google Scholar] [CrossRef]
- Mouloua, D.; Ahmed Kotbi, A.; Deokar, G.; Kaja, K.; Marssi, M.E.; Khakani, M.A.; Jouiad, M. Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials 2021, 14, 3283. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Fominski, D.V.; Dzhumaev, P.S.; Troyan, I.A. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target. Opt. Laser Technol. 2018, 102, 74–84. [Google Scholar] [CrossRef]
- Fominski, V.; Demin, M.; Fominski, D.; Romanov, R.I.; Goikhman, A.; Maksimova, K. Comparative study of the structure, composition, and electrocatalytic performance of hydrogen evolution in MoSx~2+δ/Mo and MoSx~3+δ films obtained by pulsed laser deposition. Nanomaterials 2020, 10, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuffredi, G.; Mezzetti, A.; Perego, A.; Mazzolini, P.; Prato, M.; Fumagalli, F.; Lin, Y.-C.; Liu, C.; Ivanov, I.N.; Belianinov, A.; et al. Non-Equilibrium Synthesis of Highly Active Nanostructured, Oxygen-Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. Small 2020, 16, 2004047. [Google Scholar] [CrossRef]
- Fominski, V.; Gnedovets, A.; Fominski, D.; Roman Roman, R.; Kartsev, P.; Rubinkovskaya, O.; Novikov, S. Pulsed laser deposition of nanostructured MoS3/np-Mo//WO3−y hybrid catalyst for enhanced (photo)electrochemical hydrogen evolution. Nanomaterials 2019, 9, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fominskii, V.Y.; Grigoriev, S.N.; Gnedovets, A.G.; Romanov, R.I. Specific features of ion-initiated processes during pulsed laser deposition of MoSe2 coatings in pulsed electric fields. Tech. Phys. Lett. 2012, 38, 683–686. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Nevolin, V.N.; Romanov, R.I.; Smurov, I. Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field. J. Appl. Phys. 2001, 89, 1449–145715. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, H.; Li, X.; Li, Y.; Jin, Y.; Liu, X.; Shi, G.; Wong, P.K. A hierarchical SiPN/CN/MoSx photocathode with low internal resistance and strong light-absorption for solar hydrogen production. Appl. Catal. B 2022, 300, 120758. [Google Scholar] [CrossRef]
- Luo, Z.; Tuo Wang, T.; Gong, J. Single-crystal silicon-based electrodes for unbiased solar water splitting: Current status and prospects. Chem. Soc. Rev. 2019, 48, 2158–2181. [Google Scholar] [CrossRef]
- Joe, J.; Yang, H.; Bae, C.; Shin, H. Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts 2019, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Li, S.; Yang, G.; Zhang, K.; Tang, D.; Su, Y.; Li, Y.; Luo, S.; Chang, K.; Ye, J. In Situ Assembly of MoSx Thin-Film through Self-Reduction on p-Si for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution. Adv. Funct. Mater. 2020, 31, 2007071. [Google Scholar] [CrossRef]
- Huang, F.; Cho, B.; Chung, H.-S.; Son, S.B.; Kim, J.H.; Bae, T.-S.; Yun, H.J.; Sohn, J.I.; Oh, K.H.; Hahm, M.G.; et al. The influence of interfacial tensile strain on the charge transport characteristics of MoS2-based vertical heterojunction devices. Nanoscale 2016, 8, 17598. [Google Scholar] [CrossRef] [PubMed]
- Bolar, S.; Shit, S.; Murmu, N.C.; Samanta, P.; Kuila, T. Activation Strategy of MoS2 as HER Electrocatalyst through Doping-Induced Lattice Strain, Band Gap Engineering, and Active Crystal Plane Design. ACS Appl. Mater. Interfaces 2021, 13, 765–780. [Google Scholar] [CrossRef] [PubMed]
- Seger, B.; Laursen, A.B.; Vesborg, P.C.K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n+p-Silicon Photocathode. Angew. Chem. Int. Ed. 2012, 124, 9262–9265. [Google Scholar] [CrossRef]
- Laursen, A.B.; Pedersen, T.; Malacrida, P.; Seger, B.; Hansen, O.; Vesborga, P.C.K.; Chorkendorff, I. MoS2—An integrated protective and active layer on n+p-Si for solar H2 evolution. Phys. Chem. Chem. Phys. 2013, 15, 20000–20004. [Google Scholar] [CrossRef]
- Quigley, M.; Liu, D.; Park, H.E.; Yu, D.X.; Hwang, D.J. Rapid Laser Scanning Based Surface Texturing for Energy Applications and Laser-Assisted Doping. In Proceedings of the SPIE 2013, Laser Applications in Microelectronic and Optoelectronic Manufacturing XVIII, San Francisco, CA, USA, 29 March 2013; Volume 8607. [Google Scholar] [CrossRef]
- Wang, S.; Mai, L.; Wenham, A.; Hameiri, Z.; Payne, D.; Chan, C.; Hallam, B.; Sugianto, A.; Chong, C.M.; Ji, J.; et al. Selective emitter solar cell through simultaneous laser doping and grooving of silicon followed by self-aligned metal plating. Sol. Energy Mater. Sol. Cells 2017, 169, 151–158. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Smurov, I.; Smirnov, A.L. Surface alloying of metals by nanosecond laser pulse under transparent overlays. J. Appl. Phys. 2003, 93, 5989–5999. [Google Scholar] [CrossRef]
- Çopuroğlu, M.; Sezen, H.; Opila, R.L.; Suzer, S. Band-Bending at Buried SiO2/Si Interface as Probed by XPS. ACS Appl. Mater. Interfaces 2013, 5, 5875–5881. [Google Scholar] [CrossRef]
- Shih, C.-K.; Ciou, Y.-T.; Chiu, C.-W.; Li, Y.-R.; Jheng, J.-S.; Chen, Y.-C.; Lin, C.-H. Effects of Different Oxidation Degrees of Graphene Oxide on P-Type and N-Type Si Heterojunction Photodetectors. Nanomaterials 2018, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Aslan, E.; Yanalak, G.; Patir, I.H. In Situ Generated Amorphous Molybdenum Sulfide on Reduced Graphene Oxide Nanocomposite Catalyst for Hydrogen Evolution in a Biphasic Liquid System. ChemCatChem 2021, 13, 5203–5209. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, P.; Wang, B.; Wang, Y.; Liu, Z. Enhanced Hydrogen Evolution Reaction of Amorphous MoSx via Carbon Depositing of TiO2 Nanotube Arrays. Catal. Lett. 2022, 152, 679–688. [Google Scholar] [CrossRef]
- Do, H.H.; Leb, Q.V.; Tekalgne, M.T.; Tran, A.V.; Lee, T.H.; Hong, S.H.; Han, S.M.; Ahn, S.H.; Kim, Y.J.; Jang, H.W.; et al. Metal–organic framework-derived MoSx composites as efficient electrocatalysts for hydrogen evolution reaction. J. Alloys Compd. 2021, 852, 156952. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Ng, K.H.; Lai, Y. Molybdenum sulfide cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chem. Eng. J. 2021, 425, 131478. [Google Scholar] [CrossRef]
- Ye, H.; Wang, L.; Deng, S.; Zeng, X.; Nie, K.; Duchesne, P.N.; Wang, B.; Liu, S.; Zhou, J.; Zhao, F.; et al. Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Adv. Energy Mater. 2017, 7, 1601602. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Nguyen, L.N.; Nguyen, P.D.; Thu, T.V.; Nguyen, A.D.; Tran, P.D. Crystallization of Amorphous Molybdenum Sulfide Induced by Electron or Laser Beam and Its Effect on H2 Evolving Activities. J. Phys. Chem. C 2016, 120, 28789–28794. [Google Scholar] [CrossRef]
- Ben-Naim, M.; Britto, R.J.; Aldridge, C.W.; Mow, R.; Steiner, M.A.; Nielander, A.C.; King, L.A.; Friedman, D.J.; Deutsch, T.G.; Young, J.L.; et al. Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem III−V Unassisted Solar Water Splitting. ACS Energy Lett. 2020, 5, 2631–2640. [Google Scholar] [CrossRef]
- Sorgenfrei, N.; Giangrisostomi, E.; Jay, R.M.; Kühn, D.; Neppl, S.; Ovsyannikov, R.; Sezen, H.; Svensson, S.; Föhlisch, A. Photodriven Transient Picosecond Top-Layer Semiconductor to Metal Phase-Transition in P-Doped Molybdenum Disulfide. Adv. Mater. 2021, 33, 2006957. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fominski, V.; Demin, M.; Fominski, D.; Romanov, R.; Rubinkovskaya, O.; Shvets, P.; Goikhman, A. Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production. Nanomaterials 2022, 12, 2080. https://doi.org/10.3390/nano12122080
Fominski V, Demin M, Fominski D, Romanov R, Rubinkovskaya O, Shvets P, Goikhman A. Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production. Nanomaterials. 2022; 12(12):2080. https://doi.org/10.3390/nano12122080
Chicago/Turabian StyleFominski, Vyacheslav, Maxim Demin, Dmitry Fominski, Roman Romanov, Oxana Rubinkovskaya, Petr Shvets, and Aleksandr Goikhman. 2022. "Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production" Nanomaterials 12, no. 12: 2080. https://doi.org/10.3390/nano12122080
APA StyleFominski, V., Demin, M., Fominski, D., Romanov, R., Rubinkovskaya, O., Shvets, P., & Goikhman, A. (2022). Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production. Nanomaterials, 12(12), 2080. https://doi.org/10.3390/nano12122080