Cavitand Decorated Silica as a Selective Preconcentrator for BTEX Sensing in Air
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monosilylated QxCav
2.2. Silica Grafting Procedure
2.3. Preconcentrator Testing Protocol
3. Results and Discussion
3.1. Preparation and Characterization of the Preconcentrator Material
3.2. Uptake and Release Capacity of the Material
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lahlou, H.; Vilanova, X.; Correig, X. Gas phase micro-preconcentrators for benzene monitoring: A review. Actuators B Chem. 2013, 176, 198–210. [Google Scholar] [CrossRef]
- Stenehjem, J.S.; Kjærheim, K.; Bråtveit, M.; Samulesen, S.O.; Barone-Adesi, F.; Rothman, N.; Lan, Q.; Grimsrud, T.H. Benzene exposure and risk of lymphohaematopoietic cancers in 25 000 offshore oil industry workers. Br. J. Cancer 2015, 112, 1603–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinalli, R.; Pedrini, A.; Dalcanale, E. Environmental gas sensing with cavitands. Chem. Eur. J. 2018, 24, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://pollution.it/en/?product=pyxis-gc-btex&noredirect=en-US (accessed on 20 April 2022).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://ec.europa.eu/environment/air/quality/existing_leg.htm (accessed on 25 May 2022).
- Zampolli, S.; Elmi, I.; Mancarella, F.; Betti, P.; Dalcanale, E.; Cardinali, G.C.; Severi, M. Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph. Actuators B Chem. 2009, 141, 322–328. [Google Scholar] [CrossRef]
- Condorelli, G.G.; Motta, A.; Favazza, M.; Gurrieri, E.; Betti, P.; Dalcanale, E. Molecular recognition of halogen-tagged aromatic VOCs at the air–silicon interface. Chem. Commun. 2010, 46, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Tudisco, C.; Fragalà, M.E.; Giuffrida, A.E.; Bertani, F.; Pinalli, R.; Dalcanale, E.; Compagnini, G.; Condorelli, G.G. Hierarchical Route for the Fabrication of Cavitand-Modified Nanostructured ZnO Fibers for Volatile Organic Compound Detection. J. Phys. Chem. C 2016, 120, 12611–12617. [Google Scholar] [CrossRef]
- Soncini, P.; Bonsignore, S.; Dalcanale, E.; Ugozzoli, F. Cavitands as Versatile Molecular Receptors. J. Org. Chem. 1992, 57, 4608–4612. [Google Scholar] [CrossRef]
- Vincenti, M.; Dalcanale, E. Host-guest Complexation in the Gas Phase. Investigation of the Mechanism of Interaction between Cavitands and Neutral Guest Molecules. J. Chem. Soc. Perkin Trans. 1995, 2, 1069–1076. [Google Scholar] [CrossRef]
- Fanizza, E.; Depalo, N.; Fedorenko, S.; Iacobazzi, R.M.; Mukhametshina, A.; Zairov, R.; Salatino, A.; Vischio, F.; Panniello, A.; Laquintana, V.; et al. Green Fluorescent Terbium (III) Complex Doped Silica Nanoparticles for TSPO Targeting. Int. J. Mol. Sci. 2019, 20, 3139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podyachev, S.N.; Zairov, R.R.; Mustafina, A.R. 1,3-Diketone Calix[4]arene Derivatives—A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules 2021, 26, 1214. [Google Scholar] [CrossRef]
- Condorelli, G.G.; Motta, A.; Favazza, M.; Fragalà, I.L.; Busi, M.; Menozzi, E.; Dalcanale, E.; Cristofolini, L. Grafting Cavitands on the Si(100) Surface. Langmuir 2006, 22, 11126–11133. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Pinalli, R.; Ugozzoli, F.; Spera, S.; Careri, M.; Dalcanale, E. Cavitands as superior sorbents for benzene detection at trace level. New J. Chem. 2003, 27, 502–509. [Google Scholar] [CrossRef]
- Bianchi, F.; Mattarozzi, M.; Betti, P.; Bisceglie, F.; Careri, M.; Mangia, A.; Sidisky, L.; Ongarato, S.; Dalcanale, E. Innovative cavitand-based sol-gel coatings for the environmental monitoring of benzene and chlorobenzenes via solid-phase microextraction. Anal. Chem. 2008, 80, 6423–6430. [Google Scholar] [CrossRef]
- The PID Response Factors for the Four Aromatic Analytes Tested are Comparable; Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg MD, USA, 2008; p. 20899. Available online: http://webbook.nist.gov (accessed on 25 May 2022).
- Trzciński, W.; Pinalli, R.; Riboni, N.; Pedrini, A.; Bianchi, F.; Zampolli, S.; Elmi, I.; Massera, C.; Ugozzoli, F.; Dalcanale, E. In Search of the Ultimate Benzene Sensor: The EtQxBox Solution. ACS Sens. 2017, 2, 590–598. [Google Scholar] [CrossRef] [PubMed]
- El Mohajir, A.; Castro-Gutiérrez, J.; Sehn Canevesi, R.L.; Bezverkhyy, I.; Weber, G.; Bellat, J.-P.; Berger, F.; Celzard, A.; Fierro, V.; Sanchez, J.-B. Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compounds in Indoor Air. ACS Appl. Mater. Interfaces 2021, 13, 40088–40097. [Google Scholar] [CrossRef]
- Martin, M.; Crain, M.; Walsh, K.; McGill, R.A.; Houser, E.; Stepnowski, J.; Stepnowski, S.; Wu, H.-D.; Ross, S. Microfabricated vapor preconcentrator for portable ion mobility spectroscopy. Actuators B Chem. 2007, 126, 447–454. [Google Scholar] [CrossRef]
- Liedtke, S.; Zampolli, S.; Elmi, I.; Masini, L.; Barboza, T.; Dalcanale, E.; Pinalli, R.; Pählerd, M.; Drees, C.; Vautz, W. Hyphenation of a MEMS based pre-concentrator and GC-IMS. Talanta 2019, 191, 141–148. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozzi, A.; Pedrini, A.; Pinalli, R.; Cozzani, E.; Elmi, I.; Zampolli, S.; Dalcanale, E. Cavitand Decorated Silica as a Selective Preconcentrator for BTEX Sensing in Air. Nanomaterials 2022, 12, 2204. https://doi.org/10.3390/nano12132204
Rozzi A, Pedrini A, Pinalli R, Cozzani E, Elmi I, Zampolli S, Dalcanale E. Cavitand Decorated Silica as a Selective Preconcentrator for BTEX Sensing in Air. Nanomaterials. 2022; 12(13):2204. https://doi.org/10.3390/nano12132204
Chicago/Turabian StyleRozzi, Andrea, Alessandro Pedrini, Roberta Pinalli, Enrico Cozzani, Ivan Elmi, Stefano Zampolli, and Enrico Dalcanale. 2022. "Cavitand Decorated Silica as a Selective Preconcentrator for BTEX Sensing in Air" Nanomaterials 12, no. 13: 2204. https://doi.org/10.3390/nano12132204
APA StyleRozzi, A., Pedrini, A., Pinalli, R., Cozzani, E., Elmi, I., Zampolli, S., & Dalcanale, E. (2022). Cavitand Decorated Silica as a Selective Preconcentrator for BTEX Sensing in Air. Nanomaterials, 12(13), 2204. https://doi.org/10.3390/nano12132204