Template-Free Preparation of α-Ni(OH)2 Nanosphere as High-Performance Electrode Material for Advanced Supercapacitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of the 3D α-Ni(OH)2 Nanosphere
2.3. Preparation of the α-Ni(OH)2 Electrodes
2.4. Fabrication of the Asymmetrical Supercapacitor
2.5. Fabrication of the Asymmetrical Supercapacitor
2.6. Characterization
3. Results
3.1. Physical Characterization of the α-Ni(OH)2 Nanosphere
3.2. Electrochemical Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Li, J.; Zhu, Q.; Xu, B. Three-Dimensional MXenes for Supercapacitors: A Review. Small Methods 2022, 6, 2101537. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, M.; Huang, F.; Zuo, X.; Wei, X.; Li, S.; Zhang, H. Co9S8@MnO2 core–shell defective heterostructure for High-Voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chem. Eng. J. 2022, 437, 135494. [Google Scholar] [CrossRef]
- Qin, H.; Liu, P.; Chen, C.; Cong, H.-P.; Yu, S.-H. A multi-responsive healable supercapacitor. Nat. Commun. 2021, 12, 4297. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef]
- Niu, L.; Wu, T.; Chen, M.; Yang, L.; Yang, J.; Wang, Z.; Kornyshev, A.A.; Jiang, H.; Bi, S.; Feng, G. Conductive Metal-Organic Frameworks for Supercapacitors. Adv. Mater. 2022, e2200999. [Google Scholar] [CrossRef]
- Xie, P.; Yuan, W.; Liu, X.; Peng, Y.; Yin, Y.; Li, Y.; Wu, Z. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 2021, 36, 56–76. [Google Scholar] [CrossRef]
- Lobato, B.; Suárez, L.; Guardia, L.; Centeno, T.A. Capacitance and surface of carbons in supercapacitors. Carbon 2017, 122, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Yu, X.; Tu, J.; Ruan, D.; Qiao, Z. High-performance discarded separator-based activated carbon for the application of supercapacitors. J. Energy Storage 2021, 44, 103378. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Wu, W.; Qian, J.; Song, S.; Yue, Z. Feasibility of activated carbon derived from anaerobic digester residues for supercapacitors. J. Power Sources 2019, 412, 683–688. [Google Scholar] [CrossRef]
- Brousse, T.; Bélanger, D.; Long, J.W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Ge, X.; Wang, X.; Tu, J. Cation–anion double hydrolysis derived layered single metal hydroxide superstructures for boosted supercapacitive energy storage. J. Mater. Chem. A 2015, 3, 14228–14238. [Google Scholar] [CrossRef]
- Chhetri, K.; Tiwari, A.P.; Dahal, B.; Ojha, G.P.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.; Muthurasu, A.; Kim, H.Y. A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Mukhiya, T.; Tiwari, A.P.; Muthurasu, A.; Kim, H.Y. Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Huang, F.; Zhao, J.; Wang, X. Ni(OH)2 nanodot-decorated Co-Co LDH/C hollow nanocages for a high performance supercapacitor. Dalton Trans. 2020, 49, 17310–17320. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Deng, T.; Zhang, W. Ni(OH)2 derived Ni-MOF supported on carbon nanowalls for supercapacitors. Nanotechnology 2021, 32, 195404. [Google Scholar] [CrossRef]
- Xin, Y.; Dai, X.; Lv, G.; Wei, X.; Li, S.; Li, Z.; Xue, T.; Shi, M.; Zou, K.; Chen, Y.; et al. Stability-Enhanced α-Ni(OH)2 Pillared by Metaborate Anions for Pseudocapacitors. ACS Appl. Mater. Interf. 2021, 13, 28118–28128. [Google Scholar] [CrossRef]
- Yu, D.; Zheng, X.; Chen, M.; Dong, X. Large-scale synthesis of Ni(OH)2/peach gum derived carbon nanosheet composites with high energy and power density for battery-type supercapacitor. J. Colloid Inter. Sci. 2019, 557, 608–616. [Google Scholar] [CrossRef]
- Ma, L.; Kang, C.; Fu, L.; Cao, S.; Zhu, H.; Liu, Q. Core-shell Ni1.5Sn@Ni(OH)2 nanoflowers as battery-type supercapacitor electrodes with high rate and capacitance. J. Colloid Interf. Sci. 2022, 613, 244–255. [Google Scholar] [CrossRef]
- Yuan, Y.; Jia, H.; Liu, Z.; Wang, L.; Sheng, J.; Fei, W. A highly conductive Ni(OH)2 nano-sheet wrapped CuCo2S4 nano-tube electrode with a core-shell structure for high performance supercapacitors. Dalton Trans. 2021, 50, 8476–8486. [Google Scholar] [CrossRef]
- Shi, X.; Key, J.; Ji, S.; Linkov, V.; Liu, F.; Wang, H.; Gai, H.; Wang, R. Ni(OH)2 Nanoflakes Supported on 3D Ni3Se2 Nanowire Array as Highly Efficient Electrodes for Asymmetric Supercapacitor and Ni/MH Battery. Small 2019, 15, e1802861. [Google Scholar] [CrossRef]
- Dong, B.; Li, M.; Chen, S.; Ding, D.; Wei, W.; Gao, G.; Ding, S. Formation of g-C3N4@Ni(OH)2 Honeycomb Nanostructure and Asymmetric Supercapacitor with High Energy and Power Density. ACS Appl. Mater. Interf. 2017, 9, 17890–17896. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Rui, X.; Ulaganathan, M.; Madhavi, S.; Yan, Q. Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J. Power Sources 2015, 295, 323–328. [Google Scholar] [CrossRef]
- Niu, H.; Zhou, D.; Yang, X.; Li, X.; Wang, Q.; Qu, F. Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 18413–18421. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, L.L.; Ji, H.; Li, Y.; Zhao, X.; Bai, X.; Fan, X.; Zhang, F.; Ruoff, R.S. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013, 7, 6237–6243. [Google Scholar] [CrossRef]
- Yang, S.H.; Lee, Y.J.; Kang, H.; Park, S.K.; Kang, Y.C. Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core-Shell Structure for High-Performance Potassium-Ion Batteries. Nano Micro Lett. 2021, 14, 17. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Chen, F.; Wan, H.; Lin, Y.; Zhang, N.; Ma, R. Advanced supercapacitors based on α-Ni(OH)2 nanoplates/graphene composite electrodes with high energy and power density. ACS Appl. Energy Mater. 2018, 1, 1496–1505. [Google Scholar] [CrossRef]
- Ji, Z.; Li, N.; Zhang, Y.; Xie, M.; Shen, X.; Chen, L.; Xu, K.; Zhu, G. Nitrogen-doped carbon dots decorated ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitor. J. Colloid Interf. Sci. 2019, 542, 392–399. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y.; Ma, J.; Liu, S.F.; Wu, Z.S. Multitasking MXene Inks Enable High-Performance Printable Microelectrochemical Energy Storage Devices for All-Flexible Self-Powered Integrated Systems. Adv. Mater. 2021, 33, e2005449. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Hu, S.; Qian, G.; Shi, J.; Zhao, S.; Wang, Y.; Wang, C.; Lian, J. Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials 2022, 12, 810. [Google Scholar] [CrossRef]
- Qiao, S.; Huang, N.; Sun, Y.; Zhang, J.; Zhang, Y.; Gao, Z. Microwave-assisted synthesis of novel 3D flower-like NiMnO3 nanoballs as electrode material for high-performance supercapacitors. J. Alloy Compd. 2019, 775, 1109–1116. [Google Scholar] [CrossRef]
- Tseng, C.A.; Sahoo, P.K.; Lee, C.P.; Lin, Y.T.; Xu, J.H.; Chen, Y.T. Synthesis of CoO-Decorated Graphene Hollow Nanoballs for High-Performance Flexible Supercapacitors. ACS Appl. Mater. Interf. 2020, 12, 40426–40432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Pan, G.; Li, G.; Gao, X. A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J. Mater. Chem. A 2014, 2, 1524–1529. [Google Scholar] [CrossRef]
- Chai, H.; Peng, X.; Liu, T.; Su, X.; Jia, D.; Zhou, W. High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes. RSC Adv. 2017, 7, 36617–36622. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Wang, L.; Wang, X.; Zhang, Y.; Yu, Y. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film. Appl. Surf. Sci. 2016, 379, 179–185. [Google Scholar] [CrossRef]
- Hong, Y.; Xu, J.; Chung, J.S.; Choi, W. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. Sci. Technol. 2020, 58, 73–79. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, B.; Cheng, J.; Li, J.; Zhang, H.; Tang, Z.; Yang, J. Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim. Acta 2015, 173, 399–407. [Google Scholar] [CrossRef]
- Tian, J.; Shan, Q.; Yin, X.; Wu, W. A facile preparation of graphene/reduced graphene oxide/Ni(OH)2 two dimension nanocomposites for high performance supercapacitors. Adv. Powder Technol. 2019, 30, 3118–3126. [Google Scholar] [CrossRef]
- Li, B.; Cao, H. ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 2011, 21, 3346–3349. [Google Scholar] [CrossRef]
- Nivangune, N.T.; Ranade, V.V.; Kelkar, A.A. MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification. Catal. Lett. 2017, 147, 2558–2569. [Google Scholar] [CrossRef] [Green Version]
- Chuo, H.; Gao, H.; Yang, Q.; Zhang, N.; Bu, W.; Zhang, X. Rationally designed hierarchical ZnCo2O4/Ni (OH)2 nanostructures for high-performance pseudocapacitor electrodes. J. Mater. Chem. A 2014, 2, 20462–20469. [Google Scholar] [CrossRef]
- Ding, R.; Li, X.; Shi, W.; Xu, Q.; Liu, E. One-pot solvothermal synthesis of ternary Ni-Co-P micro/nano-structured materials for high performance aqueous asymmetric supercapacitors. Chem. Eng. J. 2017, 320, 376–388. [Google Scholar] [CrossRef]
- Li, X.; Ding, R.; Shi, W.; Xu, Q.; Ying, D.; Huang, Y.; Liu, E. Hierarchical porous Co(OH)F/Ni(OH)2: A new hybrid for supercapacitors. Electrochim. Acta 2018, 265, 455–473. [Google Scholar] [CrossRef]
- Yang, S.; Wu, X.; Chen, C.; Dong, H.; Hu, W.; Wang, X. Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem. Commun. 2012, 48, 2773–2775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, L.; Wang, Y.; Cai, S.; Yang, H.; Yu, H.; Ding, F.; Huang, C.; Liu, X. VO2(B)/graphene composite-based symmetrical supercapacitor electrode via screen printing for intelligent packaging. Nanomaterials 2018, 8, 1020. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-K.; Patil, S.J.; Chodankar, N.R.; Huh, Y.S.; Han, Y.-K. An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem. Eng. J. 2022, 427, 131854. [Google Scholar] [CrossRef]
- Karri, S.N.; Ega, S.P.; Srinivasan, P.; Perupogu, V. Used carbon water filter—A source for high performance microporous activated carbon electrode for aqueous supercapacitor. J. Energy Storage 2021, 44, 103399. [Google Scholar] [CrossRef]
- Yang, Q.; Lu, Z.; Liu, J.; Lei, X.; Chang, Z.; Luo, L.; Sun, X. Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog. Nat. Sci. 2013, 23, 351–366. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, S.; Qiao, G.; Wang, X.; Lu, G.; Cui, H.; Wang, X. Sepiolite/amorphous nickel hydroxide hierarchical structure for high capacitive supercapacitor. J. Alloy. Compd. 2021, 881, 160519. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Guan, H.; Zhao, Y.; Zhang, B. Decoration of nickel hydroxide nanoparticles onto polypyrrole nanotubes with enhanced electrochemical performance for supercapacitors. J. Alloy. Compd. 2017, 721, 731–740. [Google Scholar] [CrossRef]
- Sichumsaeng, T.; Chanlek, N.; Maensiri, S. Effect of various electrolytes on the electrochemical properties of Ni (OH)2 nanostructures. Appl. Surf. Sci. 2018, 446, 177–186. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Xing, X.; Wang, Z.; Wang, Y. From water and Ni foam to a Ni(OH)2@Ni foam binder-free supercapacitor electrode: A green corrosion route. ChemElectroChem 2018, 5, 434–444. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, L. Preparation and electrochemical performance of cellular structure Ni (OH) 2 thin film. Curr. Appl. Phys. 2016, 16, 115–119. [Google Scholar] [CrossRef]
- Sichumsaeng, T.; Phromviyo, N.; Maensiri, S. Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures. Int. J. Min. Met. Mater. 2021, 28, 1038–1047. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yuan, G.H.; Jiang, Z.H.; Yao, Z.P.; Yue, M. Preparation of Ni (OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J. Alloy. Compd. 2015, 618, 37–43. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, R.; Wang, H.; Key, J.; Brett, D.J.L.; Ji, S.; Yin, S.; Shen, P.K. Ranunculus flower-like Ni(OH)2@ Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. J. Mater. Chem. A 2016, 4, 7591–7595. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, X.; Liu, Y.; Wang, X.; Liu, X.; Xu, J.; Li, Y.; Liu, Y.; Wei, H.; et al. Spontaneously grown Ni(OH)2 on iron oxide nanoparticles with enhanced energy storage performance for electrodes of asymmetric supercapacitors. RSC Adv. 2017, 7, 50358–50366. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lu, L.; Xu, T.; Zhang, T.; Yang, L.; Zhang, J.; Gu, M.; Chen, L.; Cai, T. A facile method for synthesis of Ni(OH)2@xRF with excellent electrochemical performances. Mater. Lett. 2020, 273, 127867. [Google Scholar] [CrossRef]
- Xiang, G.; Yin, J.; Qu, G.; Sun, P.; Hou, P.; Huang, J.; Xu, X. Construction of ZnCo2S4@ Ni (OH)2 core–shell nanostructures for asymmetric supercapacitors with high energy densities. Inorg. Chem. Front. 2019, 6, 2135–2141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Tu, Q.; Li, X.; Sun, X.; Liu, X.; Chen, L. Template-Free Preparation of α-Ni(OH)2 Nanosphere as High-Performance Electrode Material for Advanced Supercapacitor. Nanomaterials 2022, 12, 2216. https://doi.org/10.3390/nano12132216
Zhang R, Tu Q, Li X, Sun X, Liu X, Chen L. Template-Free Preparation of α-Ni(OH)2 Nanosphere as High-Performance Electrode Material for Advanced Supercapacitor. Nanomaterials. 2022; 12(13):2216. https://doi.org/10.3390/nano12132216
Chicago/Turabian StyleZhang, Rongrong, Qian Tu, Xianran Li, Xinyu Sun, Xinghai Liu, and Liangzhe Chen. 2022. "Template-Free Preparation of α-Ni(OH)2 Nanosphere as High-Performance Electrode Material for Advanced Supercapacitor" Nanomaterials 12, no. 13: 2216. https://doi.org/10.3390/nano12132216
APA StyleZhang, R., Tu, Q., Li, X., Sun, X., Liu, X., & Chen, L. (2022). Template-Free Preparation of α-Ni(OH)2 Nanosphere as High-Performance Electrode Material for Advanced Supercapacitor. Nanomaterials, 12(13), 2216. https://doi.org/10.3390/nano12132216