(Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools
Abstract
:1. Introduction
2. (Bio)Sensing Strategies for Pharmaceuticals Using Electrochemical Devices Assembled with IL-Functionalized Carbon Nanocomposites
2.1. Carbon Nanotubes-IL Nanocomposites
2.1.1. MWCNT-IL Nanocomposites
2.1.2. SWCNT-IL Nanocomposites
2.2. Graphene-Based IL Nanocomposites
2.2.1. Combination of Graphene and MWCNT in the IL Nanocomposite
2.2.2. Other Graphene-Based IL Nanocomposites
2.3. Other Carbon-Based IL Nanocomposites
3. Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chokkareddy, R.; Niranjan, T.; Redhi, G.G. Chapter 13-Ionic liquid based electrochemical sensors and their applications. In Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin; Asiri, A.M., Kanchi, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 367–387. [Google Scholar]
- Wilkes, J.S. A short history of ionic liquids—From molten salts to neoteric solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Shah, F.U.; An, R.; Muhammad, N. Editorial: Properties and Applications of Ionic Liquids in Energy and Environmental Science. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Gorke, J.; Srienc, F.; Kazlauskas, R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess Eng. 2010, 15, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanizamani, F.; Timur, S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal. Chem. 2018, 90, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Emel’yanenko, V.N.; Boeck, G.; Verevkin, S.P.; Ludwig, R. Volatile Times for the Very First Ionic Liquid: Understanding the Vapor Pressures and Enthalpies of Vaporization of Ethylammonium Nitrate. Chem. A Eur. J. 2014, 20, 11640–11645. [Google Scholar] [CrossRef]
- Galal, A.; Atta, N.F. Chapter TWELVE-Use of ionic liquids in electrochemical sensors. In Ionic Liquids in Analytical Chemistry; Carda-Broch, S., Ruiz-Angel, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 343–368. [Google Scholar]
- Alizadeh, M.; Nodehi, M.; Salmanpour, S.; Karimi, F.; Sanati, A.L.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Jafari, H. Properties and Recent Advantages of N,N-dialkylimidazolium-ion Liquids Application in Electrochemistry. Curr. Anal. Chem. 2022, 18, 31–52. [Google Scholar] [CrossRef]
- Upasham, S.; Banga, I.K.; Jagannath, B.; Paul, A.; Lin, K.-C.; Muthukumar, S.; Prasad, S. Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing. Biosens. Bioelectron. 2021, 177, 112940. [Google Scholar] [CrossRef]
- Tarannum, A.; Rao, J.R.; Fathima, N.N. Insights into protein-ionic liquid interaction: A comprehensive overview on theoretical and experimental approaches. Int. J. Biol. Macromol. 2022, 209, 498–505. [Google Scholar] [CrossRef]
- Neumann, J.; Steudte, S.; Cho, C.-W.; Thöming, J.; Stolte, S. Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions. Green Chem. 2014, 16, 2174–2184. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.; Aguiar, L.; Ferraz, R.; Teixeira, C.; Gomes, P. The Emerging Role of Ionic Liquid-Based Approaches for Enhanced Skin Permeation of Bioactive Molecules: A Snapshot of the Past Couple of Years. Int. J. Mol. Sci. 2021, 22, 11991. [Google Scholar] [CrossRef] [PubMed]
- Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-Gradient Spin−Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids. J. Phys. Chem. B 2001, 105, 4603–4610. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 2010, 373, 1–56. [Google Scholar] [CrossRef]
- Shiddiky, M.J.A.; Torriero, A.A.J. Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron. 2011, 26, 1775–1787. [Google Scholar] [CrossRef]
- Neto, M.J.; Leones, R.; Sentanin, F.; Esperança, J.M.S.S.; Medeiros, M.J.; Pawlicka, A.; Silva, M.M. Ionic liquids for solid-state electrolytes and electrosynthesis. J. Electroanal. Chem. 2014, 714–715, 63–69. [Google Scholar] [CrossRef]
- Delmo, E.P.; Wang, Y.; Wang, J.; Zhu, S.; Li, T.; Qin, X.; Tian, Y.; Zhao, Q.; Jang, J.; Wang, Y.; et al. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4. Chin. J. Catal. 2022, 43, 1687–1696. [Google Scholar] [CrossRef]
- Li, F.; Mocci, F.; Zhang, X.; Ji, X.; Laaksonen, A. Ionic liquids for CO2 electrochemical reduction. Chin. J. Chem. Eng. 2021, 31, 75–93. [Google Scholar] [CrossRef]
- Kobzar, Y.L.; Fatyeyeva, K. Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments. Chem. Eng. J. 2021, 425, 131480. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Pernak, J.; Rzemieniecki, T.; Materna, K. Ionic liquids “in a nutshell” (history, properties and development). Chemik 2016, 70, 476–480. [Google Scholar]
- Zuin, V.G.; Segatto, M.L.; Ramin, L.Z. Green Chemistry in Analytical Chemistry. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2018; pp. 1–24. [Google Scholar]
- Tunckol, M.; Durand, J.; Serp, P. Carbon nanomaterial–ionic liquid hybrids. Carbon 2012, 50, 4303–4334. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.F.; Morais, S. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2018, 8, 1925. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Sousa, C.P.; Salazar-Banda, G.R.; de Lima-Neto, P.; Correia, A.N.; Morais, S. Current overview and perspectives on carbon-based (bio)sensors for carbamate pesticides electroanalysis. TrAC Trends Anal. Chem. 2020, 124, 115779. [Google Scholar] [CrossRef]
- Torrinha, Á.; Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Correia, A.N.; Lima-Neto, P.; Morais, S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials 2020, 10, 1268. [Google Scholar] [CrossRef]
- Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem. 2011, 656, 2–16. [Google Scholar] [CrossRef]
- Curreri, A.M.; Mitragotri, S.; Tanner, E.E.L. Recent Advances in Ionic Liquids in Biomedicine. Adv. Sci. 2021, 8, 2004819. [Google Scholar] [CrossRef] [PubMed]
- Rama, R.; Meenakshi, S.; Pandian, K.; Gopinath, S.C.B. Room Temperature Ionic Liquids-Based Electrochemical Sensors: An Overview on Paracetamol Detection. Crit. Rev. Anal. Chem. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Miller, T.H.; Bury, N.R.; Owen, S.F.; MacRae, J.I.; Barron, L.P. A review of the pharmaceutical exposome in aquatic fauna. Environ. Pollut. 2018, 239, 129–146. [Google Scholar] [CrossRef]
- Zenker, A.; Cicero, M.R.; Prestinaci, F.; Bottoni, P.; Carere, M. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J. Environ. Manag. 2014, 133, 378–387. [Google Scholar] [CrossRef]
- Larivière, A.; Lissalde, S.; Soubrand, M.; Casellas-Français, M. Overview of Multiresidues Analytical Methods for the Quantitation of Pharmaceuticals in Environmental Solid Matrixes: Comparison of Analytical Development Strategy for Sewage Sludge, Manure, Soil, and Sediment Samples. Anal. Chem. 2017, 89, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, M.; Farré, M.; de Alda, M.L.; Perez, S.; Postigo, C.; Köck, M.; Radjenovic, J.; Gros, M.; Barcelo, D. Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 2010, 1217, 4004–4017. [Google Scholar] [CrossRef] [PubMed]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef] [Green Version]
- Reilly, R.M. Carbon Nanotubes: Potential Benefits and Risks of Nanotechnology in Nuclear Medicine. J. Nucl. Med. 2007, 48, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Iijima, S. Carbon nanotubes: Past, present, and future. Phys. B Condens. Matter 2002, 323, 1–5. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon 1995, 33, 883–891. [Google Scholar] [CrossRef]
- Banks, C.E.; Davies, T.J.; Wildgoose, G.G.; Compton, R.G. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 829–841. [Google Scholar] [CrossRef]
- Banks, C.E.; Crossley, A.; Salter, C.; Wilkins, S.J.; Compton, R.G. Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the “Electrocatalysis” Seen at Some Nanotube-Modified Electrodes. Angew. Chem. Int. Ed. 2006, 45, 2533–2537. [Google Scholar] [CrossRef]
- Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C 2012, 32, 1682–1689. [Google Scholar] [CrossRef]
- Razmi, H.; Sarhang-Zadeh, K.; Mohammad-Rezaei, R. Electrochemical Behavior and Voltammetric Determination of Diclofenac at a Multi-Walled Carbon Nanotube-Ionic Liquid Composite Modified Carbon Ceramic Electrode. Anal. Lett. 2013, 46, 1885–1896. [Google Scholar] [CrossRef]
- Sarhangzadeh, K.; Khatami, A.A.; Jabbari, M.; Bahari, S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J. Appl. Electrochem. 2013, 43, 1217–1224. [Google Scholar] [CrossRef]
- Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Kumar Gupta, V.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq. 2014, 197, 114–119. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Izadi, M.; Karimi-Maleh, H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 2013, 19, 137–144. [Google Scholar] [CrossRef]
- Damiri, S.; Oskoei, Y.M.; Fouladgar, M. Highly sensitive voltammetric and impedimetric sensor based on an ionic liquid/cobalt hexacyanoferrate nanoparticle modified multi-walled carbon nanotubes electrode for diclofenac analysis. J. Exp. Nanosci. 2016, 11, 1384–1401. [Google Scholar] [CrossRef] [Green Version]
- Gomes, R.N.; Sousa, C.P.; Casciano, P.N.S.; Ribeiro, F.W.P.; Morais, S.; de Lima-Neto, P.; Correia, A.N. Dispersion of multi-walled carbon nanotubes in [BMIM]PF6 for electrochemical sensing of acetaminophen. Mater. Sci. Eng. C 2018, 88, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Kianipour, S.; Asghari, A. Room Temperature Ionic Liquid/Multiwalled Carbon Nanotube/Chitosan-Modified Glassy Carbon Electrode as a Sensor for Simultaneous Determination of Ascorbic Acid, Uric Acid, Acetaminophen, and Mefenamic Acid. IEEE Sens. J. 2013, 13, 2690–2698. [Google Scholar] [CrossRef]
- Chokkareddy, R.; Thondavada, N.; Bhajanthri, N.K.; Redhi, G.G. An amino functionalized magnetite nanoparticle and ionic liquid based electrochemical sensor for the detection of acetaminophen. Anal. Methods 2019, 11, 6204–6212. [Google Scholar] [CrossRef]
- Azin, Z.; Pourghobadi, Z. Electrochemical Sensor Based on Nanocomposite of Multi-Walled Carbon Nano-Tubes (MWCNTs)/TiO2/Carbon Ionic Liquid Electrode Analysis of Acetaminophen in Pharmaceutical Formulations. Iran. J. Chem. Chem. Eng. (IJCCE) 2021, 40, 1030–1041. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-fard, F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. C 2016, 68, 128–135. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Izadi, M.; Rezaei, B.; Karimi-Maleh, H. N-hexyl-3-methylimidazolium hexafluoro phosphate/multiwall carbon nanotubes paste electrode as a biosensor for voltammetric detection of morphine. J. Mol. Liq. 2012, 174, 42–47. [Google Scholar] [CrossRef]
- Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C 2014, 35, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Galal, A.; Hassan, S.H. Ultrasensitive determination of nalbuphine and tramadol narcotic analgesic drugs for postoperative pain relief using nano-cobalt oxide/ionic liquid crystal/carbon nanotubes-based electrochemical sensor. J. Electroanal. Chem. 2019, 839, 48–58. [Google Scholar] [CrossRef]
- Arvand, M.; Pourhabib, A. Adsorptive Stripping Differential Pulse Voltammetric Determination of Risperidone with a Multi-Walled Carbon Nanotube-Ionic Liquid Paste Modified Glassy Carbon Electrode. J. Chin. Chem. Soc. 2013, 60, 63–72. [Google Scholar] [CrossRef]
- Zare, M.A.; Tehrani, M.S.; Husain, S.W.; Azar, P.A. Multiwall Carbon Nanotube-Ionic Liquid Modified Paste Electrode as an Efficient Sensor for the Determination of Diazepam and Oxazepam in Real Samples. Electroanalysis 2014, 26, 2599–2606. [Google Scholar] [CrossRef]
- Fasihi, F.; Farjami, F.; Shafiee, G.H. Highly sensitive determination of perphenazine on a carbon nanocomposite ionic liquid electrode. RSC Adv. 2015, 5, 95087–95095. [Google Scholar] [CrossRef]
- Fatemeh, F.; Fasihi, F.; Valibeigi, M.; Moradi, S.E. Determination of Amitriptyline on a Carbon Nanocomposite Ionic Liquid Electrode. J. Anal. Chem. 2020, 75, 941–950. [Google Scholar] [CrossRef]
- Ehzari, H.; Gholivand, M.-B.; Shamsipur, M. A sensitive electrochemical sensor based on multiwall carbon nanotube-ionic liquid/nickel oxide nanoparticles for simultaneous determination of the antipsychotic drugs clozapine and sertraline. Adv. Nanochem. 2021, 3, 23–33. [Google Scholar] [CrossRef]
- Tarahomi, S.; Rounaghi, G.H.; Daneshvar, L.; Eftekhari, M. A Carbon Ionic Liquid Paste Sensor Modified with Lanthanum Nanorods /MWCNTs/Nafion Hybrid Composite for Carbamazepine Screening in Biological and Pharmaceutical Media. ChemistrySelect 2021, 6, 10355–10361. [Google Scholar] [CrossRef]
- Hong, X.; Zhu, Y.; Ma, J. Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine. Drug Test. Anal. 2012, 4, 1034–1039. [Google Scholar] [CrossRef]
- Atta, N.F.; Ahmed, Y.M.; Galal, A. Nano-magnetite/ionic liquid crystal modifiers of carbon nanotubes composite electrode for ultrasensitive determination of a new anti-hepatitis C drug in human serum. J. Electroanal. Chem. 2018, 823, 296–306. [Google Scholar] [CrossRef]
- Chokkareddy, R.; Kanchi, S.; Inamuddin. Simultaneous detection of ethambutol and pyrazinamide with IL@CoFe2O4NPs@MWCNTs fabricated glassy carbon electrode. Sci. Rep. 2020, 10, 13563. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, F.; Zeng, B. Fabrication of surface molecularly imprinted electrochemical sensor for the sensitive quantification of chlortetracycline with ionic liquid and MWCNT improving performance. Talanta 2022, 239, 123130. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Wei, W.; Zeng, X.; Liu, X.; Zhang, X.; Zhang, Y. Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchim. Acta 2009, 166, 53–59. [Google Scholar] [CrossRef]
- Salmanpour, S.; Tavana, T.; Pahlavan, A.; Khalilzadeh, M.A.; Ensafi, A.A.; Karimi-Maleh, H.; Beitollahi, H.; Kowsari, E.; Zareyee, D. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mater. Sci. Eng. C 2012, 32, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
- Pahlavan, A.; Gupta, V.K.; Sanati, A.L.; Karimi, F.; Yoosefian, M.; Ghadami, M. ZnO/CNTs nanocomposite/ionic liquid carbon paste electrode for determination of noradrenaline in human samples. Electrochim. Acta 2014, 123, 456–462. [Google Scholar] [CrossRef]
- Tavana, T.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J. Mol. Liq. 2012, 168, 69–74. [Google Scholar] [CrossRef]
- Beitollah, H.; Goodarzian, M.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Hassanzadeh, M.; Tajbakhsh, M. Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J. Mol. Liq. 2012, 173, 137–143. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rostami, S.; Karimi-Male, H.; Karimi, F.; Keyvanfard, M.; Saleh, T.A. Square wave voltammetric analysis of carbidopa based on carbon paste electrode modified with ZnO/CNTs nanocomposite and n-hexyl-3-methylimidazolium hexafluoro phosphate ionic liquid. Int. J. Electrochem. Sci 2015, 10, 1517–1528. [Google Scholar]
- Tajik, S.; Garkani-Nejad, Z.; Mahmoudi-Moghaddam, H.; Beitollahi, H.; Khabazzadeh, H. Electrochemical Determination of Levodopa and Cabergoline by a Magnetic Core-Shell Iron (II,III) Oxide@Silica/Multiwalled Carbon Nanotube/Ionic Liquid/2-(4-Oxo-3-Phenyl-3,4-Dihydroquinazolinyl)- N′-Phenyl-Hydrazine Carbothioamide (FSCNT/IL/2PHC) Modified Carbon Paste Electrode. Anal. Lett. 2021, 54, 2638–2654. [Google Scholar] [CrossRef]
- Fouladgar, M.; Karimi-Maleh, H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics 2013, 19, 1163–1170. [Google Scholar] [CrossRef]
- Norouzi, P.; Gupta, V.K.; Larijani, B.; Rasoolipour, S.; Faridbod, F.; Ganjali, M.R. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode. Talanta 2015, 131, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, L.; Zhang, L.; Shao, C.; Li, C. Voltammetric determination of nitrendipine on composite film modified electrode. J. Anal. Chem. 2011, 66, 969. [Google Scholar] [CrossRef]
- Baezzat, M.R.; Banavand, F.; Fasihi, F. Electrooxidation study and highly sensitive voltammetric determination of alfuzosin employing multi-walled carbon nanotubes and the ionic liquid 1-hexylpyridinium hexafluorophosphate nanocomposite sensor. J. Mol. Liq. 2017, 233, 391–397. [Google Scholar] [CrossRef]
- Beitollahi, H.; Yoonesfar, R. Sensitive detection of sulfasalazine at a carbon paste electrode modified with NiO/CNT nanocomposite and ionic liquid in pharmaceutical and biological samples. Inorg. Nano-Met. Chem. 2017, 47, 1441–1448. [Google Scholar] [CrossRef]
- Khaleghi, F.; Irai, A.E.; Sadeghi, R.; Gupta, V.K.; Wen, Y. A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor. Sensors 2016, 16, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaleghi, F.; Irai, A.E.; Gupta, V.K.; Agarwal, S.; Bijad, M.; Abbasghorbani, M. Highly sensitive nanostructure voltammetric sensor employing Pt/CNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate for determination of tryptophan in food and pharmaceutical samples. J. Mol. Liq. 2016, 223, 431–435. [Google Scholar] [CrossRef]
- Khan, S.I.; Motghare, R.V. Electrochemical Determination of Chlorophenaramine Based on RTIL/CNT Composite Modified Glassy Carbon Electrode in Pharmaceutical Samples. J. Electrochem. Soc. 2019, 166, B1202–B1208. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Pizarro, P.; Álvarez-Lueje, A. Carbon Nanotubes Ionic Liquid Gel. Characterization and Application to Pseudoephedrine and Chlorpheniramine Determination in Pharmaceuticals. J. Chil. Chem. Soc. 2019, 64, 4324–4331. [Google Scholar] [CrossRef] [Green Version]
- Vicentini, F.C.; Elisa Ravanini, A.; Silva, T.A.; Janegitz, B.C.; Zucolotto, V.; Fatibello-Filho, O. A novel architecture based upon multi-walled carbon nanotubes and ionic liquid to improve the electroanalytical detection of ciprofibrate. Analyst 2014, 139, 3961–3967. [Google Scholar] [CrossRef]
- Wang, H.; Duan, Y.; Zhao, G.; Wang, Z.; Liu, G. Sensitive Determination of Rutin in Pharmaceuticals Using an Ionic Liquid and MWNT Modified Screen Printed Electrode. Int. J. Electrochem. Sci 2015, 10, 8759–8769. [Google Scholar]
- Zaheiritousi, N.; Zamani, H.A.; Karimi-Maleh, H. Fast and Unique Electrochemical Sensor Amplified with MgO/CNTs and Ionic Liquid for Monitoring of Isuprel in Pharmaceutical and Biological Fluid Samples. Top. Catal. 2022, 65, 739–746. [Google Scholar] [CrossRef]
- Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science 2003, 300, 2072–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayazi, Z.; Izadyar, S.; Habibi, B. Ionic liquid/single-walled carbon nanotubes composite film modified carbon-ceramic electrode as an electrochemical sensor for the simultaneous determination of epinephrine and uric acid. J. Chin. Chem. Soc. 2018, 65, 1510–1520. [Google Scholar] [CrossRef]
- Babaei, A.; Babazadeh, M.; Afrasiabi, M. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single-Walled Carbon Nanotubes Nanocomposite. Chin. J. Chem. 2011, 29, 2157–2164. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Kianipour, S.; Babaei, A.; Nasimi, A.A.; Shabanian, M. A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. J. Saudi Chem. Soc. 2016, 20, S480–S487. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Zhao, F.; Li, J.; Yan, R.; Yu, J.; Zeng, B. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube–gold nanoparticle–ionic liquid composite film modified glassy carbon electrodes. Anal. Chim. Acta 2007, 596, 79–85. [Google Scholar] [CrossRef]
- Alizadeh, M.; Azar, P.A.; Mozaffari, S.A.; Karimi-Maleh, H.; Tamaddon, A.-M. Evaluation of Pt,Pd-Doped, NiO-Decorated, Single-Wall Carbon Nanotube-Ionic Liquid Carbon Paste Chemically Modified Electrode: An Ultrasensitive Anticancer Drug Sensor for the Determination of Daunorubicin in the Presence of Tamoxifen. Front. Chem. 2020, 8. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A. Fabrication of CdO/single wall carbon nanotubes modified ionic liquids carbon paste electrode as a high performance sensor in diphenhydramine analysis. J. Mol. Liq. 2016, 219, 1023–1029. [Google Scholar] [CrossRef]
- Salmanpour, S.; Sadrnia, A.; Karimi, F.; Majani, N.; Yola, M.L.; Gupta, V.K. NiO nanoparticle decorated on single-wall carbon nanotubes and 1-butyl-4-methylpyridinium tetrafluoroborate for sensitive raloxifene sensor. J. Mol. Liq. 2018, 254, 255–259. [Google Scholar] [CrossRef]
- Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan Inst. Chem. Eng. 2017, 80, 989–996. [Google Scholar] [CrossRef]
- Afshar, S.; Zamani, H.A.; Karimi-Maleh, H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J. Pharm. Biomed. Anal. 2020, 188, 113393. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Galal, A.; Ahmed, Y.M. New strategy for determination of anti-viral drugs based on highly conductive layered composite of MnO2/graphene/ionic liquid crystal/carbon nanotubes. J. Electroanal. Chem. 2019, 838, 107–118. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; Ahmed, Y.M.; El-Ads, E.H. Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine. Sens. Actuators B Chem. 2019, 297, 126648. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Y.; Liu, Y.; Zhao, F.; Zeng, B. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization. J. Hazard. Mater. 2022, 434, 128907. [Google Scholar] [CrossRef]
- Sarhangzadeh, K. Application of multi wall carbon nanotube–graphene hybrid for voltammetric determination of naproxen. J. Iran. Chem. Soc. 2015, 12, 2133–2140. [Google Scholar] [CrossRef]
- Peng, J.Y.; Hou, C.T.; Liu, X.X.; Li, H.B.; Hu, X.Y. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta 2011, 86, 227–232. [Google Scholar] [CrossRef]
- Peng, J.; Hou, C.; Hu, X. Determination of metronidazole in pharmaceutical dosage forms based on reduction at graphene and ionic liquid composite film modified electrode. Sens. Actuators B Chem. 2012, 169, 81–87. [Google Scholar] [CrossRef]
- Wong, A.; Silva, T.A.; Vicentini, F.C.; Fatibello-Filho, O. Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta 2016, 161, 333–341. [Google Scholar] [CrossRef]
- Shabani-Nooshabadi, M.; Roostaee, M. Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J. Mol. Liq. 2016, 220, 329–333. [Google Scholar] [CrossRef]
- Arkan, E.; Karimi, Z.; Shamsipur, M.; Saber, R. Electrochemical Determination of Celecoxib on a Graphene Based Carbon Ionic Liquid Electrode Modified with Gold Nanoparticles and Its Application to Pharmaceutical Analysis. Anal. Sci. 2013, 29, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Tajik, S.; Taher, M.A.; Beitollahi, H. Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens. Actuators B Chem. 2014, 197, 228–236. [Google Scholar] [CrossRef]
- Chokkareddy, R.; Thondavada, N.; Kabane, B.; Redhi, G.G. A novel ionic liquid based electrochemical sensor for detection of pyrazinamide. J. Iran. Chem. Soc. 2021, 18, 621–629. [Google Scholar] [CrossRef]
- Darabi, R.; Shabani-Nooshabadi, M. Development of an amplified nanostructured electrochemical sensor for the detection of cefixime in pharmaceuticals and biological samples. J. Pharm. Biomed. Anal. 2022, 212, 114657. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Taher, M.A.; Beitollahi, H. First Report for Electrochemical Determination of Levodopa and Cabergoline: Application for Determination of Levodopa and Cabergoline in Human Serum, Urine and Pharmaceutical Formulations. Electroanalysis 2014, 26, 796–806. [Google Scholar] [CrossRef]
- Atta, N.F.; Elkholy, S.S.; Ahmed, Y.M.; Galal, A. Host Guest Inclusion Complex Modified Electrode for the Sensitive Determination of a Muscle Relaxant Drug. J. Electrochem. Soc. 2016, 163, B403–B409. [Google Scholar] [CrossRef]
- Norouzi, P.; Larijani, B.; Ganjali, M.; Faridbod, F. Determination of rutin in pharmaceutical formulations using admittance biosensor based on dna and nano composite film using coulometric fft admittance voltammetry. Int. J. Electrochem. Sci 2014, 9, 3130–3143. [Google Scholar]
- Shafiee, S.; Shabani-Nooshabadi, M. The study of synergistic effects of ZnO decorated graphene nanosheets and room temperature ionic liquid for analysis of raloxifene in pharmaceutical samples. Res. Chem. Intermed. 2018, 44, 5181–5191. [Google Scholar] [CrossRef]
- Afzali, M.; Jahromi, Z.; Nekooie, R. Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchem. J. 2019, 145, 373–379. [Google Scholar] [CrossRef]
- Afzali, M.; Mostafavi, A.; Nekooie, R.; Jahromi, Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J. Mol. Liq. 2019, 282, 456–465. [Google Scholar] [CrossRef]
- Afzali, M.; Mostafavi, A.; Shamspur, T. Sensitive detection of colchicine at a glassy carbon electrode modified with magnetic ionic liquid/CuO nanoparticles/carbon nanofibers in pharmaceutical and plasma samples. J. Iran. Chem. Soc. 2020, 17, 1753–1764. [Google Scholar] [CrossRef]
- Ibrahim, H.; Temerk, Y. Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan. Microchim. Acta 2020, 187, 579. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, C.E.P.; Rodrigues, E.S.B.; Fernandes Alecrim, M.; Thomaz, D.V.; Macêdo, I.Y.L.; Garcia, L.F.; de Oliveira Neto, J.R.; Moreno, E.K.G.; Ballaminut, N.; de Souza Gil, E. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals 2019, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Fathirad, F.; Mostafavi, A.; Afzali, D. Electrospun Pd nanoparticles loaded on Vulcan carbon/ conductive polymeric ionic liquid nanofibers for selective and sensitive determination of tramadol. Anal. Chim. Acta 2016, 940, 65–72. [Google Scholar] [CrossRef]
- Mohammadi, N.; Adeh, N.B.; Najafi, M. A highly defective mesoporous carbon–ionic liquid paste electrode toward the sensitive electrochemical determination of rutin. Anal. Methods 2017, 9, 84–93. [Google Scholar] [CrossRef]
- Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci 2017, 12, 7997–8005. [Google Scholar] [CrossRef]
- Shalali, F.; Cheraghi, S.; Taher, M.A. A sensitive electrochemical sensor amplified with ionic liquid and N-CQD/Fe3O4 nanoparticles for detection of raloxifene in the presence of tamoxifen as two essentials anticancer drugs. Mater. Chem. Phys. 2022, 278, 125658. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem. 2017, 240, 125–131. [Google Scholar] [CrossRef]
- Park, S.; Kazlauskas, R.J. Biocatalysis in ionic liquids–advantages beyond green technology. Curr. Opin. Biotechnol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
Analyte | Ionic Liquid, IL | (Bio)Sensor | Detection Technique | Linear Range (μmol L−1) | Sensitivity (μA μmol−1 L) | LOD (μmol L−1) | Real Samples | Ref. |
---|---|---|---|---|---|---|---|---|
Anti-Inflammatories/Analgesics | ||||||||
diclofenac | EMIM.PF6 | GCE/Cu(OH)2-MWCNT-IL-paraffin | DPV | 0.18–119 | 0.0147 | 0.04 | fish serum seawater pharm. formul. | [43] |
diclofenac | BMIM.PF6 | CCE/MWCNT-IL | DPV | 0.05–20 | 0.2 | 0.027 | plasma | [44] |
diclofenac | BMIM.PF6 | CCE/MWCNT-IL | DPV | 0.05–50 | 0.406 | 0.018 | pharm. formul. plasma | [45] |
indomethacin | 1–50 | 0.24 | 0.26 | |||||
diclofenac | BMIM.PF6 | CPE(graphite + MWCNT + paraffin + IL) | SWV | 0.3–35 35–750 | 0.1 0.029 | 0.09 | pharm. formul. urine | [46] |
diclofenac | HMIM.PF6 | CPE(graphite + MWCNT + IL + paraffin) | DPV | 0.5–300 | - | 0.2 | pharm. formul. urine | [47] |
diclofenac | BMIM.Cl | CPE(MWCNT-CoHCF + IL + paraffin) | DPV | 1–100 | 0.208 | 0.3 | pharm. formul. urine | [48] |
acetaminophen | BMIM.PF6 | GCE/MWCNT-Nafion-IL | SWV | 0.3–3 | 2.09 | 0.067 | pharm. formul. | [49] |
acetaminophen | EMIM.BF4 | GCE/MWCNT-IL-chit | DPV | 1–400 | 0.325 | 0.24 | serum urine | [50] |
mefenamic acid | 2–650 | 0.116 | 1.2 | |||||
acetaminophen | EMIM.BF4 | GCE/MWCNT-Fe3O4(NH2)-IL | DPV | 0.01–0.7 | 102 | 0.04 | pharm. formul. | [51] |
acetaminophen | HPy.PF6 | CPE(graphite + IL + MWCNT + TiO2) | SWV | 0.01–30 | 1.05 | 0.003 | plasma pharm. formul. | [52] |
ibuprofen | MOIM.BF4 | GCE/MWCNT-Chit-IL/terephthalaldehyde/ssDNA1/ssDNA2/MB | DPV | 7 × 10−5–6 | 7.7 × 105 | 2 × 10−5 | pharm. formul. serum wastewater | [53] |
morphine | HMIM.PF6 | CPE(graphite + paraffin + MWCNT + IL) | DPV | 0.6–10 10–600 | 0.15 0.019 | 0.02 | pharm. formul. urine | [54] |
morphine | BMIM.Cl | CPE(graphite + paraffin + NiO-MWCNT + IL) | SWV | 0.05–520 | 0.0521 | 0.01 | pharm. formul. urine | [55] |
nalbuphine | BMPip.PF6 | CPE(graphite + paraffin + IL + MWCNT + Co3O4) | DPV | 0.06–10 | 0.49 | 5.8 × 10−4 | urine pharm. formul. | [56] |
tramadol | 0.06–10 | 0.486 | 6.2 × 10−4 | |||||
Antidepressive/Antipsychotic | ||||||||
risperidone | OPy.PF6 | CPE(graphite + MWCNT + IL) | DPV | 0.01–0.2 | 16 | 0.0065 | pharm. formul. serum | [57] |
diazepam | OPy.PF6 | CPE(graphite + MWCNT + IL) | SWV | 0.07–2.7 | 6.8 | 0.012 | pharm. formul. serum urine | [58] |
Oxazepam | 0.17–6.6 | 0.66 | 0.02 | |||||
perphenazine | OPy.PF6 | CPE(graphite + MWCNT + IL) | DPV | 0.05–30 30–150 | 2.41 0.55 | 0.023 | pharm. formul. serum | [59] |
amitriptyline | OPy.PF6 | CPE(graphite + MWCNT + IL) | DPV | 0.05–90 | 0.3723 | 0.019 | pharm. formul. | [60] |
clozapine | BMIM.PF6 | GCE/MWCNT-IL/NiO | DPV | 0.5–67 | 0.5146 | 0.052 | pharm. formul. serum | [61] |
sertraline | 0.21–85 | 0.5306 | 0.047 | |||||
carbamazepine | BMIM.TFSI | CPE(graphite + paraffin + IL)/LaNR-MWCNT/Nafion | SWV | 0.06–20 | 0.02 | 0.006 | pharm. formul. urine | [62] |
Antibiotic | ||||||||
sulfadiazine | OPy.PF6 | GCE/IL-MWCNT | amperometry | 3.3–35.4 | 0.214 | 0.21 | pharm. formul. | [63] |
daclatasvir | BMPip.PF6 | GCE/MWCNT/IL/MWCNT/ Fe3O4 | DPV | 0.003–0.1 0.5–15 | 154 | 4 × 10−5 | serum pharm. formul. | [64] |
ethambutol | EMIM.BF4 | GCE/MWCNT-CoFe2O4/IL | DPV | 0.2–2.2 | 17.37 | 0.02 | pharm. formul. | [65] |
pyrazinamide | 0.6–2.8 | 13.66 | 0.01 | |||||
chlortetracycline | HEMIM.BF4 | GCE/MWCNT-IL/IL-MIP | DPV | 0.4–10 10–55 | 2.58 1.32 | 0.08 | pharm. formul. milk tap water | [66] |
Hormone | ||||||||
estradiol | BMIM.PF6 | GCE/MWCNT-IL | LSV | 0.01–1 1–7.5 | 30.58 6.29 | 0.005 | river water serum | [67] |
norepinephrine | BMIM.Br | CPE(graphite + paraffin + MWCNT + IL) | DPV | 0.3–30 30–450 | 0.0841 0.0231 | 0.09 | pharm. formul. urine serum | [68] |
norepinephrine | dPIM.Br | CPE(graphite + paraffin + IL + ZnO-MWCNT) | SWV | 0.05–8 8–450 | 2.946 0.349 | 0.02 | pharm. formul. urine | [69] |
epinephrine | BMIM.Br | CPE(graphite + paraffin + MWCNT + IL) | DPV | 0.3–450 | 0.0237 | 0.09 | pharm. formul. serum urine | [70] |
Antiparkinson | ||||||||
carbidopa | BMIM.Br | CPE(graphite + paraffin + MWCNT + IL) | SWV | 0.1–110 110–420 | 0.028 0.014 | 0.06 | serum urine | [71] |
carbidopa | HMIM.PF6 | CPE(graphite + paraffin + MWCNT-ZnO + IL) | SWV | 0.09–3.5 3.5–450 | 0.986 0.109 | 0.05 | serum urine water | [72] |
levodopa | BPy.PF6 | CPE(graphite + paraffin + Fe3O4-SiO2-MWCNT + IL + PHC) | DPV | 0.06–20 20–400 | 0.294 0.0294 | 0.02 | pharm. formul. serum urine | [73] |
Cabergoline | 0.07–350 | 0.08 | 0.019 | |||||
Antihypertensive | ||||||||
methyldopa | BMIM.Br | CPE(graphite + paraffin + MWCNT + IL) | SWV | 0.4–400 | 2.78 | 0.1 | urine pharm. formul. water | [74] |
amlodipine | EMIM.BF4 | GCE/MWCNT-IL/AuNPs | CDFFTAV | 0.001–0.2 | - | 1.25 × 10−4 | pharm. formul. | [75] |
nitrendipine | BMIM.PF6 | GCE/MWCNT-chit-IL | LSV | 0.4–50 | 0.77 | 0.1 | pharm. formul. | [76] |
Others | ||||||||
alfuzosin | HPy.PF6 | CPE(graphite + IL + MWCNT) | DPV | 0.02–90 | 0.635 | 0.0041 | plasma | [77] |
sulfasalazine | HMIM.PF6 | CPE(graphite + NiO-MWCNT + IL) | SWV | 0.5–800 | 0.046 | 0.09 | pharm. formul. urine | [78] |
folic acid | dPIM.Br | CPE(graphite + paraffin + IL + MWCNT-ZnO) | SWV | 0.08–650 | - | 0.05 | pharm. formul. mint leaves juice | [79] |
L-tryptophan | BMIM.PF6 | CPE(graphite + paraffin + IL + Pt-MWCNT) | SWV | 0.1–400 | 0.0469 | 0.04 | pharm. formul. meat extract | [80] |
chlorpheniramine | BMIM.BF4 | GCE/MWCNT-IL | LSV | 1–90 | - | 0.7 | pharm. formul. | [81] |
pseudoephedrine | BMIM.PF6 | GCE/MWCNT/MWCNT-IL | DPV | 240–980 | 0.104 | 196 | pharm. formul. | [82] |
chlorpheniramine | 1.4–100 | 0.84 | 0.42 | |||||
ciprofibrate | BMIM.Cl | GCE/DHP-MWCNT-IL | DPV | 0.25–7.41 | - | 0.092 | pharm. formul. | [83] |
rutin | OPy.PF6 | SPE/cellulose-IL-graphite/chit-MWCNT | DPV | 0.05–3.5 | 0.782 | 0.02 | pharm. formul. | [84] |
isoprenaline | BMIM.PF6 | CPE(graphite + MgO-MWCNT + IL + paraffin) | DPV | 6 × 10−4–420 | - | 1 × 10−4 | pharm. formul. | [85] |
Analyte | Ionic Liquid, IL | Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|
diphenhydramine | BMIM.PF6 | CPE(SWCNT-CdO + IL) | SWV | 0.05–700 | 0.163 | 0.009 | pharm. formul. serum | [92] |
raloxifene | BMPy.BF4 | CPE(graphite + SWCNT-NiO + paraffin + IL) | SWV | 0.03–520 | 0.158 | 0.007 | pharm. formul. serum | [93] |
mycophenolate | HMIM.PF6 | CPE(graphite + SWCNT-MgO + IL + paraffin) | SWV | 0.1–450 | 0.031 | 0.07 | pharm. formul. serum | [94] |
chloramphenicol | OMIM.PF6 | GCE/AuNPs-SWCNT-IL | DPV | 0.01–6 | 0.532 | 0.05 | milk | [90] |
epinephrine | EMIM.BF4 | CCE/SWCNT-IL | DPV | 0.1–200 | 0.376 | 0.028 | serum urine | [87] |
epinephrine acetaminophen | EMIM.BF4 | GCE/SWCNT-chit-IL | DPV | 1–580 0.5–400 | 0.500 0.847 | 0.09 0.06 | serum urine | [88] |
acetaminophen | EMIM.BF4 | GCE/SWCNT-chit-IL | DPV | 2–200 | 0.328 | 0.11 | urine serum | [89] |
daunorubicin | BdMIM.BF4 | CPE(graphite + Pt-Pd-NiO-SWCNT + IL + paraffin) | DPV | 0.008–350 | 0.227 | 0.003 | pharm. formul. dextrose serum | [91] |
adrenalone folic acid | BMIM.MS | CPE(graphite + SWCNT-NiO + IL + paraffin) | DPV | 0.001–400 0.3–350 | 0.193 0.279 | 0.006 0.07 | pharm. formul. | [95] |
Analyte | Ionic Liquid, IL | Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Samples | Ref. |
---|---|---|---|---|---|---|---|---|
naproxen | BMIM.PF6 | CCE/MWCNT-rGO-IL | DPV | 0.8–100 | 0.3533 | 0.125 | plasma | [99] |
acetaminophen amlodipine dobutamine | BMPip. PF6 | GCE/MWCNT/IL/rGO/CW | DPV | 0.001–20 0.008–30 0.02–40 | 1.81 0.956 0.873 | 9.06 × 10−5 1.39 × 10−4 4.97 × 10−4 | pharm. formul. serum | [97] |
sofosbuvir ledipasvir acyclovir | BMPip. PF6 | GCE/MWCNT/IL/rGO/MnO2 | DPV | 0.20–150 0.0070–15 0.010–30 | 0.049 0.63 0.47 | 0.0098 1.07 × 10−4 8.43 × 10−4 | pharm. formul. serum | [96] |
oxytetracycline | HEMIM. BF4 | GCE/MWCNT-N_rGO-IL/Au-CNS-IL-MIP | DPV | 0.02–20 | 2.72 | 0.005 | lake water pond water pork | [98] |
Analyte | Ionic Liquid, IL | (Bio)Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|
Anti-Inflammatories/Analgesics | ||||||||
celecoxib | EMIM.PF6 | CPE(graphite + rGO + IL + paraffin)/AuNPs | DPV | 0.5–15 | 0.2 | pharm. formul. serum | [104] | |
acetaminophen isoproterenol theophylline | HMIM.PF6 | CPE(graphite + GrNS + BBFT + IL + paraffin) | SWV | 10–1000 0.06–700 12–1200 | 0.056 0.731 0.013 | 8.1 0.012 9.2 | pharm. formul. tea serum urine | [105] |
Antibiotics | ||||||||
azithromycin | BMIM.PF6 | GCE/Gr-IL | DPV | 0.65–37 | - | 0.25 | pharm. formul. | [100] |
metronindazole | BMIM.PF6 | GCE/Gr-IL-chit | DPV | 0.10–25 | 0.0592 | 0.047 | pharm. formul. | [101] |
ofloxacin | BMIM.BF4 | CPE(graphite + GO + IL + paraffin) | SWAdASV | 0.007–0.7 | 7.7 | 2.8 × 10−4 | pharm. formul. urine | [102] |
sulfamethoxazole | BMIM.Br | CPE(graphite + paraffin + NiO-GO + IL) | SWV | 0.08–550 | 0.0101 | 0.04 | pharm. formul. urine | [103] |
pyrazinamide | EMIM.BF4 | GCE/AgNPs-rGO/IL | DPV | 3–24 | 0.4547 | 0.0102 | pharm. formul. | [106] |
cefixime | EMIM.Cl | CPE(graphite + paraffin + CoFe2O4-rGO + IL) | DPV | 0.06–10 10–700 | 1.71 0.016 | 0.035 | pharm. formul. urine serum | [107] |
Others | ||||||||
levodopa cabergoline | HMIM.PF6 | CPE(graphite + BBFT + GrNS + IL + paraffin) | SWV | 0.05–15 15–800 | 0.58 0.048 | 0.015 – | pharm. formul. urine pharm. formul. blood | [108] |
methocarbamol | BMPip.PF6 | GCE/IL/rGO/IL/CD | DPV | 0.04–1 8–100 | 3.015 0.193 | 6.64 × 10–6 | urine | [109] |
rutin | BMIM.PF6 | GCE/GrNS-IL/ZrO2/DNA | CFFTAV | 0.002–0.150 | – | 2.3 × 10−4 | pharm. formul. | [110] |
raloxifene | dPIM.Br | CPE(graphite + GrNS-ZnO + IL + paraffin) | SWV | 0.0001–5 1–500 | – | 7.0 × 10–5 | pharm. formul. serum | [111] |
Analyte | Ionic Liquid, IL | Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|
Anti-Inflammatories/Analgesics | ||||||||
naproxen | BMIM.PF6 | CPE(graphite + CNF-AuNPs-PANI)/IL | DPV | 5 × 10−5–0.02 | 3904 | 1.6 × 10−5 | pharm. formul. urine | [112] |
colchicine | BMIM.FeCl4 | GCE/CuO-CNF-IL/Nafion | DPV | 0.001–0.1 | 34.5 | 2.5 × 10−4 | pharm. formul plasma | [114] |
diclofenac | BMIM.PF6 | PGE/CB-IL | DPV | 10–45 | - | 0.08 | pharm. formul. | [116] |
tramadol | EIM.VS | GCE/Pd-CB-ILnanofibers-Nafion | SWV | 0.05–10.0 10.0–200.0 | 0.812 0.136 | 0.015 | pharm. formul. urine plasma | [117] |
Anticancer | ||||||||
pemetrexed | M3OA.NTF2 | CPE(graphite + paraffin)/CNF-Pd-IL/Nafion | SWV | 0.001–0.035 | 259 | 3.3 × 10−4 | pharm. formul. plasma urine | [113] |
Irinitecan | BMIM.PF6 | CPE(AuNPs-CNF + IL + paraffin) | SWV | 0.004–1.79 | 23.5 | 0.00155 | pharm. formul. serum urine | [115] |
Others | ||||||||
rutin | BMIM.PF6 | CPE(graphite + DMC + IL + paraffin) | SWV | 0.008–4 | 103.7 | 0.00117 | Ruta extract orange juice pharm. formul. | [118] |
methyldopa | BMIM.PF6 | CPE(graphite + paraffin + GQD + IL) | SWV | 0.04–750.0 | - | 0.01 | pharm. formul. serum | [119] |
raloxifene | BMIM.BF4 | CPE(graphite + paraffin + N_CQD-Fe3O4 + IL) | DPV | 0.04–320 | 0.242 | 0.01 | pharm. formul. urine | [120] |
diazepam | BMIM.BF4 | GCE/fullerene-CNT-IL | DPV | 0.3–50 50–700 | 0.173 0.023 | 0.087 | pharm. formul. urine serum | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrinha, Á.; Oliveira, T.M.B.F.; Ribeiro, F.W.P.; de Lima-Neto, P.; Correia, A.N.; Morais, S. (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools. Nanomaterials 2022, 12, 2368. https://doi.org/10.3390/nano12142368
Torrinha Á, Oliveira TMBF, Ribeiro FWP, de Lima-Neto P, Correia AN, Morais S. (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools. Nanomaterials. 2022; 12(14):2368. https://doi.org/10.3390/nano12142368
Chicago/Turabian StyleTorrinha, Álvaro, Thiago M. B. F. Oliveira, Francisco W. P. Ribeiro, Pedro de Lima-Neto, Adriana N. Correia, and Simone Morais. 2022. "(Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools" Nanomaterials 12, no. 14: 2368. https://doi.org/10.3390/nano12142368
APA StyleTorrinha, Á., Oliveira, T. M. B. F., Ribeiro, F. W. P., de Lima-Neto, P., Correia, A. N., & Morais, S. (2022). (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools. Nanomaterials, 12(14), 2368. https://doi.org/10.3390/nano12142368