Low-Temperature UVO-Sintered ZnO/SnO2 as Robust Cathode Buffer Layer for Ternary Organic Solar Cells
Abstract
:1. Introduction
2. Experimental Details
2.1. Fabrication of ZnO/SnO2 Bilayer
2.2. Fabrication of OSCs with ZnO/SnO2 CBL
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuo, L.J.; Jo, S.B.; Li, Y.K.; Meng, Y.H.; Stoddard, R.J.; Liu, Y.; Lin, F.; Shi, X.L.; Liu, F.; Hillhouse, H.W.; et al. Dilution effect for highly efficient multiple-component organic solar cells. Nat. Nanotechnol. 2022, 17, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Nowsherwan, G.A.; Samad, A.; Iqbal, M.A.; Mushtaq, T.; Hussain, A.; Malik, M.; Haider, S.; Pham, P.V.; Choi, J.R. Performance analysis and optimization of a PBDB-T:ITIC based organic solar cell using graphene oxide as the hole transport layer. Nanomaterials 2022, 12, 1767. [Google Scholar] [CrossRef] [PubMed]
- Riede, M.; Spoltore, D.; Leo, K. Organic solar cells-the path to commercial success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z.K.; Liu, K.; Sun, X.X.; Tao, J.Y.; Wang, J.F.; Zou, Z.J.; Liao, G.H.; Li, F.; Ni, J.; et al. Germanium nanoparticles film as a room-temperature electron transport layer for organic solar cells. Sol. Energy 2021, 226, 421–426. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.Q.; Li, C.; Yan, J.; Zhou, G.Q.; Zhong, W.K.; Hao, T.Y.; Song, J.L.; Xue, X.N.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.W.; Wang, T.; Guo, J.; Liu, C.; et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 2022, 34, 2110147. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.X.; Zhang, X.N.; Zhang, Y.; Zhou, H.Q. Role of interface properties in organic solar cells: From substrate engineering to bulk-heterojunction interfacial morphology. Mater. Chem. Front. 2020, 4, 2863–2880. [Google Scholar] [CrossRef]
- Zhang, D.F.; Fan, B.B.; Ying, L.; Li, N.; Brabec, C.J.; Huang, F.; Cao, Y. Recent progress in thick-film organic photovoltaic devices: Materials, devices, and processing. SusMat 2021, 1, 4–23. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Jin, H.; Yang, J.M.; Bao, Q.Y.; Ma, Z.F.; Tress, W.; Tang, Z. An underestimated photoactive area in organic solar cells based on a ZnO interlayer. J. Mater. Chem. C 2021, 9, 11753–11760. [Google Scholar] [CrossRef]
- Kong, T.Y.; Wang, R.; Zheng, D.; Yu, J.S. Modification of the SnO2 electron transporting layer by using perylene diimide derivative for efficient organic solar cells. Front. Chem. 2021, 25, 703561. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Dhawan, P.K.; Patel, S.P.; Bhasker, H.P. Large area semitransparent inverted organic solar cells with enhanced operational stability using TiO2 electron transport layer for building integrated photovoltaic devices. Mater. Lett. 2021, 283, 128725. [Google Scholar] [CrossRef]
- Mahajan, P.; Ahmed, A.; Datt, R.; Gupta, V.; Arya, S. Chemically synthesized ZnO-WO3 nanoparticles as electron and hole transport layer in organic solar cells. ECS Trans. 2022, 107, 9199. [Google Scholar] [CrossRef]
- Liu, C.H.; Xiao, C.Y.; Li, W.W. Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. J. Mater. Chem. C 2021, 9, 14093–14114. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Zhao, C.W.; Fang, J.; Xia, D.D.; Zhang, Y.F.; Xiao, C.Y.; Wu, Y.G.; You, S.Y.; Li, W.W. Functional ligand-decorated ZnO nanoparticles as cathode interlayers for efficient organic solar cells. ACS Appl. Energy Mater. 2021, 5, 1291–1297. [Google Scholar] [CrossRef]
- Sung, Y.M.; Akbar, A.K.; Biring, S.; Li, C.F.; Huang, Y.C.; Liu, S.W. The effect of ZnO preparation on the performance of inverted polymer solar cells under one sun and indoor light. J. Mater. Chem. C 2021, 9, 1196–1204. [Google Scholar] [CrossRef]
- Yu, H.Z.; Huang, X.X.; Huang, C.W. PEIE doped ZnO as a tunable cathode interlayer for efficient polymer solar cells. Appl. Surf. Sci. 2019, 470, 318–330. [Google Scholar] [CrossRef]
- Oba, F.; Choi, M.; Togo, A.; Tanaka, I. Point defects in ZnO: An approach from first principles. Sci. Technol. Adv. Mater. 2011, 12, 34302. [Google Scholar] [CrossRef]
- Wu, J.J.; Long, F.; Tang, B.Y.; Tang, X. Electronic structure and ferromagnetic properties of Zn vacancies in ZnO screw dislocations: First-principles calculations. AIP Adv. 2018, 8, 065115. [Google Scholar] [CrossRef]
- Wei, J.F.; Ji, G.Q.; Zhang, C.J.; Yan, L.P.; Luo, Q.; Wang, C.; Chen, Q.; Yang, J.L.; Chen, L.W.; Ma, C.Q. Silane-capped ZnO nanoparticles for use as the electron transport layer in inverted organic solar cells. ACS Nano 2018, 12, 5518–5529. [Google Scholar] [CrossRef]
- Bovhyra, R.; Popovych, D.; Bovgyra, O.; Serednytsky, A. First principle study of native point defects in (ZnO)n nanoclusters (n = 34, 60). Appl. Nanosci. 2019, 9, 1067–1074. [Google Scholar] [CrossRef]
- Harun, K.; Yaakob, M.K.; Taib, M.F.M.; Sahraoui, B.; Ahmad, Z.A.; Mohamad, A.A. Efficient diagnostics of the electronic and optical properties of defective ZnO nanoparticles synthesized using the sol-gel method: Experimental and theoretical studies. Mater. Res. Express 2017, 4, 085908. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Q.; Wiranwetchayan, O.; Xi, J.; Yang, Z.; Park, K.; Li, C.; Cao, G. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells. Adv. Funct. Mater. 2012, 22, 2194–2201. [Google Scholar] [CrossRef]
- Bulliard, X.; Ihn, S.G.; Yun, S.; Kim, Y.; Choi, D.; Choi, J.Y.; Kim, M.; Sim, M.; Park, J.H.; Choi, W.; et al. Enhanced performance in polymer solar cells by surface energy control. Adv. Funct. Mater. 2010, 20, 4381–4387. [Google Scholar] [CrossRef]
- Wei, B.; Tang, Z.Y.; Wang, S.L.; Qin, C.P.; Li, C.Y.; Ding, X.W.; Gao, Y.L.; Portier, X.; Gourbilleau, F.; Stiévenard, D.; et al. Enhanced photovoltaic performance of inverted polymer solar cells through atomic layer deposited Al2O3 passivation of ZnO-nanoparticle buffer layer. Nanotechnology 2018, 29, 395204. [Google Scholar] [CrossRef]
- Zafar, M.; Kim, B.S.; Kim, D.H. Improvement in performance of inverted organic solar cell by rare earth element lanthanum doped ZnO electron buffer layer. Mater. Chem. Phys. 2020, 240, 122076. [Google Scholar] [CrossRef]
- Tian, L.; Xue, Q.F.; Hu, Z.C.; Huang, F. Recent advances of interface engineering for non-fullerene organic solar cells. Org. Electron. 2021, 93, 106141. [Google Scholar] [CrossRef]
- Yao, K.; Leng, S.F.; Liu, Z.L.; Fei, L.F.; Chen, Y.J.; Li, S.B.; Zhou, N.G.; Zhang, J.; Xu, Y.X.; Zhou, L.; et al. Fullerene-anchored core-shell ZnO nanoparticles for efficient and stable dual-sensitized perovskite solar cells. Joule 2019, 3, 417–431. [Google Scholar] [CrossRef]
- Mahajan, P.; Singh, A.; Arya, S. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. J. Alloys Compd. 2020, 814, 152292. [Google Scholar] [CrossRef]
- Sun, X.X.; Li, C.; Ni, J.; Huang, L.K.; Xu, R.; Li, Z.L.; Cai, H.K.; Li, J.; Zhang, Y.Y.; Zhang, J.J. A facile two-step interface engineering strategy to boost the efficiency of inverted ternary-blend polymer solar cells over 10%. ACS Sustain. Chem. Eng. 2017, 5, 8997–9005. [Google Scholar] [CrossRef]
- Li, C.; Sun, X.X.; Ni, J.; Huang, L.K.; Xu, R.; Li, Z.L.; Cai, H.K.; Li, J.; Zhang, Y.F.; Zhang, J.J. Ternary organic solar cells based on ZnO-Ge double electron transport layer with enhanced power conversion efficiency. Sol. Energy 2017, 155, 1052–1058. [Google Scholar] [CrossRef]
- Huang, S.H.; Ali, N.; Huai, Z.X.; Ren, J.P.; Sun, Y.S.; Zhao, X.H.; Fu, G.S.; Kong, W.G.; Yang, S.P. A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer. Org. Electron. 2020, 78, 105555. [Google Scholar] [CrossRef]
- Özen, Y.; Candan, I. SnO2 interlayer effects on the inverted polymer solar cells. Chem. Phys. Lett. 2020, 740, 137078. [Google Scholar] [CrossRef]
- Lou, Q.; Han, Y.F.; Liu, C.; Zheng, K.H.; Zhang, J.S.; Chen, X.; Du, Q.; Chen, C.; Ge, Z.Y. π-conjugated small molecules modified SnO2 layer for perovskite solar cells with over 23% efficiency. Adv. Energy Mater. 2021, 11, 2101416. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, X.W.; You, J.B. SnO2: A wonderful electron transport layer for perovskite solar cells. Small 2018, 14, 1801154. [Google Scholar] [CrossRef]
- Huang, L.K.; Sun, X.X.; Li, C.; Xu, J.; Xu, R.; Du, Y.Y.; Ni, J.; Cai, H.K.; Li, J.; Hu, Z.Y.; et al. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Appl. Mater. Inter. 2017, 9, 21909–21920. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tao, J.Y.; Zou, Z.J.; Liao, G.H.; Li, F.; Wang, J.F.; Sun, X.X.; Ni, J.; Zhang, J.J. Broad spectrum light-trapping ternary polymer solar cells based on self-assembled nano-ridged active layer. Sol. Energy 2020, 198, 1–7. [Google Scholar] [CrossRef]
- Sun, X.X.; Ni, J.; Li, C.; Huang, L.K.; Xu, R.; Li, Z.L.; Cai, H.K.; Li, J.; Zhang, J.J. Air-processed high performance ternary blend solar cell based on PTB7-Th: PCDTBT: PC70BM. Org. Electron. 2016, 37, 222–227. [Google Scholar] [CrossRef]
- Yasuda, T.; Yamaguchi, Y.; Zou, D.C.; Tsutsui, T. Carrier mobilities in organic electron transport materials determined from space charge limited current. Jpn. J. Appl. Phys. 2002, 41, 5626. [Google Scholar] [CrossRef]
- Schlenker, C.W.; Barlier, V.S.; Chin, S.W.; Whited, M.T.; McAnally, R.E.; Forrest, S.R.; Thompson, M.E. Cascade organic solar cells. Chem. Mater. 2011, 23, 4132–4140. [Google Scholar] [CrossRef]
- Keshtmand, R.; Zamani-Meymian, M.R.; Mohamadkhani, F.; Taghavinia, N. Smoothing and coverage improvement of SnO2 electron transporting layer by NH4F treatment: Enhanced fill factor and efficiency of perovskite solar cells. Sol. Energy 2021, 228, 253–262. [Google Scholar] [CrossRef]
- Spinelli, P.; Fuentes Pineda, R.; Scigaj, M.; Ahmad, T.; Wojciechowski, K. Transparent conductive electrodes based on co-sputtered ultra-thin metal layers for semi-transparent perovskites solar cells. Appl. Phys. Lett. 2021, 118, 241110. [Google Scholar] [CrossRef]
- MacLeod, B.A.; De Villers, B.J.T.; Schulz, P.; Ndione, P.F.; Kim, H.; Giordano, A.J.; Zhou, K.; Marder, S.R.; Graham, S.; Berry, J.J.; et al. Stability of inverted organic solar cells with ZnO contact layers deposited from precursor solutions. Energ. Environ. Sci. 2015, 8, 592–601. [Google Scholar] [CrossRef]
CBLs | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
UVO-ZnO | 17.72 | 0.761 | 69.07 | 9.05 (8.45 ± 0.27) |
UVO-SnO2 | 16.33 | 0.754 | 67.97 | 8.37 (7.78 ± 0.28) |
UVO-ZnO/SnO2 | 19.03 | 0.770 | 72.05 | 10.56 (9.94 ± 0.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Li, F.; Fang, J.; Chen, M.; Sun, X.; Li, C.; Tao, J.; Liao, G.; Zhang, J. Low-Temperature UVO-Sintered ZnO/SnO2 as Robust Cathode Buffer Layer for Ternary Organic Solar Cells. Nanomaterials 2022, 12, 3149. https://doi.org/10.3390/nano12183149
Zou Z, Li F, Fang J, Chen M, Sun X, Li C, Tao J, Liao G, Zhang J. Low-Temperature UVO-Sintered ZnO/SnO2 as Robust Cathode Buffer Layer for Ternary Organic Solar Cells. Nanomaterials. 2022; 12(18):3149. https://doi.org/10.3390/nano12183149
Chicago/Turabian StyleZou, Zhijun, Fen Li, Jing Fang, Mingxin Chen, Xiaoxiang Sun, Chang Li, Jiayou Tao, Gaohua Liao, and Jianjun Zhang. 2022. "Low-Temperature UVO-Sintered ZnO/SnO2 as Robust Cathode Buffer Layer for Ternary Organic Solar Cells" Nanomaterials 12, no. 18: 3149. https://doi.org/10.3390/nano12183149