Lead-Free Copper-Based Perovskite Nanonets for Deep Ultraviolet Photodetectors with High Stability and Better Performance
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Arquer, F.P.G.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 3. [Google Scholar] [CrossRef]
- Dong, R.; Bi, C.; Dong, Q.F.; Guo, F.W.; Yuan, Y.B.; Fang, Y.J.; Xiao, Z.G.; Huang, J.S. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv. Opt. Mater. 2014, 2, 549–554. [Google Scholar] [CrossRef]
- Lu, H.; Tian, W.; Cao, F.R.; Ma, Y.L.; Gu, B.K.; Li, L. A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater. 2016, 26, 1296–1302. [Google Scholar] [CrossRef]
- Sun, B.; Edgar, M.P.; Bowman, R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgett, M.J. 3D computational imaging with single-pixel detectors. Science 2013, 340, 844–847. [Google Scholar] [CrossRef]
- Shabbir, B.; Liu, J.Y.; Krishnamurthi, V.; Ayyubi, R.A.W.; Tran, K.; Tawfik, S.A.; Hossain, M.M.; Khan, H.; Wu, Y.J.; Shivananju, B.N.; et al. Soft X-ray detectors based on SnS nanosheets for the water window regin. Adv. Funct. Mater. 2021, 32, 2105038. [Google Scholar] [CrossRef]
- Cai, S.; Xu, X.J.; Yang, W.; Chen, J.X.; Fang, X.S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.Y.; Liu, K.W.; Zhang, Z.Z.; Li, B.H.; Wu, J.B.; Wang, J.Y.; Ni, Y.X.; Shen, D.Z. Responsivity improvement of a packaged ZnMgO solar blind ultraviolet photodetector via a sealing treatment of silica gel. J. Mater. Chem. C 2020, 8, 1089–1094. [Google Scholar] [CrossRef]
- Guo, F.W.; Yang, B.; Yuan, Y.B.; Xiao, Z.G.; Dong, Q.F.; Bi, Y.; Huang, J.S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802. [Google Scholar] [CrossRef]
- Kang, C.H.; Dursun, I.; Liu, G.Y.; Sinatra, L.; Sun, X.B.; Kong, M.W.; Pan, J.; Maity, P.; Ooi, E.N.; Ng, T.K.; et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light-Sci. Appl. 2019, 8, 94. [Google Scholar] [CrossRef]
- Wang, F.X.; Chang, D.M.; Lu, Z.Q. AlGaN-based p-i-p-i-n solar-blind ultraviolet avalanche photodetectors with modulated polarization electric field. Int. J. Numer. Model. El. 2020, 33, e2763. [Google Scholar] [CrossRef]
- Zheng, E.J.; Yuh, B.; Tosado, G.A.; Yu, Q.M. Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films. J. Mater. Chem. C 2017, 5, 3796–3806. [Google Scholar] [CrossRef]
- Kim, J.; Joo, S.S.; Lee, K.W.; Kim, J.H.; Shin, D.H.; Kim, S.; Choi, S.H. Near-ultraviolet-sensitive graphene/porous silicon photodetectors. ACS Appl. Mater. Inter. 2014, 6, 20880–20886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.Q.; Ai, Q.; Chen, X.; Gao, X.H.; Liu, K.W.; Shen, D.Z. Ultraviolet photodetectors based on wide bandgap oxide semiconductor films. Chin. Phys. B 2019, 28, 048503. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Q.; Gan, L.; Li, X.; Li, H.Q.; Zhang, Y.; Golberg, D.; Zhai, T.Y. High performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704–712. [Google Scholar] [CrossRef]
- Wang, X.; Tian, W.; Liao, M.Y.; Bando, Y.; Golberg, D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev. 2014, 43, 1400–1422. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.N.; Tian, H.; Guo, J.S.; Wei, Y.Q.; Chen, H.; Miao, Y.F.; Zou, W.; Pan, K.; He, Y.R.; et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef]
- Green, M.A.; Jiang, Y.J.; Soufiani, A.M.; Ho-Baillie, A. Optical properties of photovoltaic organic-inorganic lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 4774–4785. [Google Scholar] [CrossRef]
- Guo, Z.; Wan, Y.; Yang, M.J.; Snaider, J.; Zhu, K.; Huang, L.B. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59–62. [Google Scholar] [CrossRef]
- Wang, H.; Kim, D.H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689. [Google Scholar] [CrossRef]
- Dou, L.T.; Yang, Y.; You, J.B.; Hong, Z.R.; Chang, W.H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 10, 1866. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.K.; Moghaddam, R.S.; Lai, M.L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Chen, K.Q.; Khan, S.A.; Shabbir, B.; Zhang, Y.P.; Khan, Q.; Bao, Q.L. Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology 2020, 31, 152002. [Google Scholar] [CrossRef]
- Maculan, G.; Sheikh, A.D.; Abdelhady, A.L.; Saidaminov, M.I.; Hague, M.A.; Murali, B.; Alarousu, E.; Mohammed, O.F.; Wu, T.; Bakr, O.M. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 2015, 6, 3781–3786. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Zhou, D.L.; Xu, W.; Chen, X.; Pan, G.C.; Zhou, X.Y.; Ding, N.; Song, H.W. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors. Adv. Funct. Mater. 2018, 28, 1804429. [Google Scholar] [CrossRef]
- Jellicoe, T.C.; Richter, J.M.; Glass, H.F.J.; Tabachnyk, M.; Brady, R.; Dutton, S.E.; Rao, A.; Friend, R.H.; Credgington, D.; Greenham, N.C.; et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944. [Google Scholar] [CrossRef]
- Wang, A.F.; Yan, X.X.; Zhang, M.; Sun, S.B.; Yang, M.; Shen, W.; Pan, X.Q.; Wang, P.; Deng, Z.T. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 2016, 28, 8132–8140. [Google Scholar] [CrossRef]
- Leng, M.Y.; Yang, Y.; Zeng, K.; Chen, Z.W.; Tan, Z.F.; Li, S.R.; Li, J.H.; Xu, B.; Li, D.B.; Hautzinger, M.P.; et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 2018, 28, 1704446. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.K.; Khan, J.; Tang, J.; Song, H.S. High quantum yield blue emission from lead free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302. [Google Scholar] [CrossRef]
- Creutz, S.E.; Crites, E.N.; De Siena, M.C.; Gamelin, D.R. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett. 2018, 18, 1118–1123. [Google Scholar] [CrossRef]
- Du, M.H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides. ACS Energy Lett. 2020, 5, 464–469. [Google Scholar] [CrossRef]
- Lian, L.Y.; Zheng, M.Y.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J.B.; Niu, G.D.; Zhang, D.L.; Zhai, T.Y.; et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly luminescent self-trapped excitons from local structure symmetrization. Chem. Mater. 2020, 32, 3462–3468. [Google Scholar] [CrossRef]
- Chen, K.; Schuenemann, S.; Song, S.; Tueysuez, H. Structural effects on optoelectronic properties of halide perovskites. Chem. Soc. Rev. 2018, 47, 7045–7077. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Z.F.; Liang, W.Q.; Wang, L.T.; Li, S.; Zhang, F.; Ma, Z.Z.; Wang, Y.; Tian, Y.Z.; Wu, D.; et al. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Mater. Horiz. 2020, 7, 530–540. [Google Scholar] [CrossRef]
- Liang, W.Q.; Li, Y.; Ma, J.L.; Wang, Y.; Yan, J.J.; Chen, X.; Wu, D.; Tian, Y.T.; Li, X.J.; Shi, Z.F. A solution-processed ternary copper halide thin films for air-stable and deep-ultraviolet-sensitive photodetector. Nanoscale 2020, 12, 17213–17221. [Google Scholar] [CrossRef]
- Wang, W.H.; Qi, L.M. Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices. Adv. Funct. Mater. 2019, 29, 1807275. [Google Scholar] [CrossRef]
- Wang, W.H.; Ma, Y.R.; Qi, L.M. High-performance photodetectors based on organometal halide perovskite nanonets. Adv. Funct. Mater. 2017, 27, 1603653. [Google Scholar] [CrossRef]
- Liu, R.H.; Zhou, H.; Song, Z.N.; Yang, X.H.; Wu, D.J.; Song, Z.H.; Wang, H.; Yan, Y.F. Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 2019, 11, 9302–9309. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.F.; Li, S.; Lei, L.Z.; Ji, H.F.; Wu, D.; Xu, T.T.; Tian, Y.T.; Li, X.J. High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C 2017, 5, 8355–8360. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Tang, J.; Qu, J.; Xia, P.; Zhu, K.; Shao, H.; Wang, C. Lead-Free Copper-Based Perovskite Nanonets for Deep Ultraviolet Photodetectors with High Stability and Better Performance. Nanomaterials 2022, 12, 3264. https://doi.org/10.3390/nano12193264
Xu S, Tang J, Qu J, Xia P, Zhu K, Shao H, Wang C. Lead-Free Copper-Based Perovskite Nanonets for Deep Ultraviolet Photodetectors with High Stability and Better Performance. Nanomaterials. 2022; 12(19):3264. https://doi.org/10.3390/nano12193264
Chicago/Turabian StyleXu, Shuhong, Jieqin Tang, Junfeng Qu, Pengfei Xia, Kai Zhu, Haibao Shao, and Chunlei Wang. 2022. "Lead-Free Copper-Based Perovskite Nanonets for Deep Ultraviolet Photodetectors with High Stability and Better Performance" Nanomaterials 12, no. 19: 3264. https://doi.org/10.3390/nano12193264
APA StyleXu, S., Tang, J., Qu, J., Xia, P., Zhu, K., Shao, H., & Wang, C. (2022). Lead-Free Copper-Based Perovskite Nanonets for Deep Ultraviolet Photodetectors with High Stability and Better Performance. Nanomaterials, 12(19), 3264. https://doi.org/10.3390/nano12193264