Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons
Abstract
:1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Graphene Nanoribbons
3.2. SGQDs Formed by Textured ZGNRs
3.3. Armchair Graphene Nanoribbons
3.4. SGQDs Formed by Textured AGNRs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Charge Density of t-ZGNRs
Appendix A.2. Electronic Band Structures
Appendix A.3. ZT Optimization of Textured ZGNRs
Appendix A.4. Local Density of States of Textured AGNRs
References
- Chen, G.; Dresselhaus, M.S.; Dresselhaus, G.; Fleurial, J.P.; Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 2003, 48, 45. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.D.; Dresselhaus, M.S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727. [Google Scholar] [CrossRef] [PubMed]
- Boukai, A.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.K.; Goddard, W.A., III; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168. [Google Scholar] [CrossRef]
- Hochbaum, A.; Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garmett, E.C.; Najarian, M.; Majumdar, A.; Yang, P.D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163. [Google Scholar] [CrossRef]
- Heremans, J.P.; Thrush, C.M.; Morelli, D.T.; Wu, M.C. Thermoelectric power of bismuth nanocomposites. Phys. Rev. Lett. 2002, 88, 216801. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Balandin, A.A.; Fomin, V.M.; Rastelli, A.; Schmidt, O.G. Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Phys. Rev. B 2011, 84, 165415. [Google Scholar] [CrossRef]
- Hu, M.; Poulikakos, D. Si/Ge Superlattice nanowires with ultralow thermal conductivity. Nano Lett. 2012, 12, 5487. [Google Scholar] [CrossRef]
- Whitney, R.S. Most efficient quantum thermoelectric at finite power output. Phys. Rev. Lett. 2014, 112, 130601. [Google Scholar] [CrossRef]
- Pietzonka, P.; Seifert, U. Universal trade-off between power, efficiency, and constancy in steady-state heat engines. Phys. Rev. Lett. 2018, 120, 190602. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.J.; Burke, A.; Svilans, A.; Linke, H.; Thelander, C. Thermoelectric power factor limit of a 1D nanowire. Phys. Rev. Lett. 2018, 120, 177703. [Google Scholar] [CrossRef]
- Luo, R.X.; Benenti, G.; Casati, G.; Wang, J. Thermodynamic bound on heat-to-power conversion. Phys. Rev. Lett. 2018, 121, 080602. [Google Scholar] [CrossRef]
- Xu, Y.; Gan, Z.; Zhang, S.C. Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators. Phys. Rev. Lett. 2014, 112, 226801. [Google Scholar] [CrossRef]
- Darancet, P.; Olevano, V.; Mayou, D. Coherent electronic transport through graphene constrictions: Subwavelength regime and optical analogy. Phys. Rev. Lett. 2009, 102, 136803. [Google Scholar] [CrossRef]
- Kagan, C.R.; Murry, C.B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013. [Google Scholar] [CrossRef]
- Lawrie, W.I.L.; Eenink, H.G.J.; Hendrickx, N.W.; Boter, J.M.; Petit, L.; Amitonov, S.V.; Lodari, M.; Paquelet Wuetz, B.; Volk, C.; Philips, S.G.J.; et al. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 2020, 116, 080501. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cao, T.; Chen, C.; Pedramraz, Z.; Haberer, D.; de Oteyza, D.G.; Fischer, F.R.; Louie, S.G.; Crommie, M.F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156. [Google Scholar] [CrossRef]
- Groning, O.; Wang, S.; Yao, X.; Pignedoli, C.A.; Barin, G.B.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X.; Narita, A. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 2018, 560, 209. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, D.J.; Veber, G.; Cao, T.; Bronner, C.; Chen, T.; Zhao, F.; Rodriguez, H.; Louie, S.G.; Crommie, M.F.; Fischer, F.R. Topological band engineering of graphene nanoribbons. Nature 2018, 560, 204. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.H.; Liljeroth, P. Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons. Adv. Phys. X 2019, 4, 1651672. [Google Scholar] [CrossRef]
- Rizzo, D.J.; Veber, G.; Jiang, J.W.; McCurdy, R.; Cao, T.; Bronner, C.; Chen, T.; Louie, S.G.; Fischer, F.R.; Crommie, M.F. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 2020, 369, 1597. [Google Scholar] [CrossRef]
- Sun, Q.; Yan, Y.; Yao, X.L.; Mullen, K.; Narita, A.; Fasel, R.; Ruffieux, P. Evolution of the topological energy band in graphene nanoribbons. J. Phys. Chem. Lett. 2021, 12, 8679. [Google Scholar] [CrossRef]
- Rizzo, D.J.; Jiang, J.W.; Joshi, D.; Veber, G.; Bronner, C.; Durr, R.A.; Jacobse, P.H.; Cao, T.; Kalayjian, A.; Rodriguez, H.; et al. Rationally designed topological quantum dots in bottom-up graphene nanoribbons. ACS Nano 2021, 15, 20633. [Google Scholar] [CrossRef]
- Llinas, J.P.; Fairbrother, A.; Borin Barin, G.; Shi, W.; Lee, K.; Wu, S.; Choi, B.Y.; Braganza, R.; Lear, J.; Kau, N.; et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 2017, 8, 633. [Google Scholar] [CrossRef]
- Lin, K.S.; Chou, M.Y. Topological properties of gapped graphene nanoribbons with spatial symmetries. Nano Lett. 2018, 8, 7254. [Google Scholar] [CrossRef]
- Zuev, Y.M.; Chang, W.; Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 2009, 102, 096807. [Google Scholar] [CrossRef]
- Wei, P.; Bao, W.Z.; Pu, Y.; Lau, C.N.; Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 2009, 102, 166808. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.Y.; Duan, W.H. Thermal and thermoelectric properties of graphene. Small 2014, 10, 2182. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Yang, J.; Wang, L.Y.; Du, K.; Yin, Q.; Yin, Q.J. Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 2017, 9, 20124. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cortie, D.L.; Liu, J.X.; Yu, D.H.; Islam, S.M.K.N.; Zhao, L.L.; Mitchell, D.R.G.; Mole, R.A.; Cortie, M.B.; Dou, S.X. Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes. Nano Energy 2018, 53, 993. [Google Scholar] [CrossRef]
- Ghosh, S.; Harish, S.; Ohtaki, M.; Saha, B.B. Thermoelectric figure of merit enhancement in cement composites with graphene and transition metal oxides. Mater. Today Energy 2020, 18, 100492. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, D.R.; Wu, J.K.; Wang, T.H.; Chuang, C.S.; Huang, S.Y.; Hsieh, W.P.; Hofmann, M.; Chang, Y.H.; Hsieh, Y.P. Two-dimensional mechano-thermoelectric heterojunctions for self-powered Strain Sensors. Nano Lett. 2021, 21, 6990. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, aak9997. [Google Scholar] [CrossRef]
- Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 1999, 59, 8271. [Google Scholar] [CrossRef]
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347. [Google Scholar] [CrossRef]
- Topsakal, M.; Sevincli, H.; Ciraci, S. Spin confinement in the superlattices of graphene ribbons. Appl. Phys. Lett. 2008, 92, 173118. [Google Scholar] [CrossRef]
- Sevincli, H.; Topsakal, M.; Ciraci, S. Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 2008, 78, 245402. [Google Scholar] [CrossRef]
- Haug, H.; Jauho, A.P. Quantum Kinetics in Transport and Optics of Semiconductors; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Kuo, D.M.T. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Adv. 2020, 10, 045222. [Google Scholar] [CrossRef]
- Phung, T.T.; Peters, R.; Honecker, A.; Trambly de Laissardiere, G.; Vahedi, J. Spin-caloritronic transport in hexagonal graphene nanoflakes. Phys. Rev. B 2020, 102, 035160. [Google Scholar] [CrossRef]
- Chen, R.S.; Ding, G.L.; Zhou, Y.; Han, S.T. Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C 2021, 9, 11407. [Google Scholar] [CrossRef]
- Mahan, G.D.; Woods, L.M. Multilayer thermionic refrigeration. Phys. Rev. Lett. 1998, 80, 4016. [Google Scholar] [CrossRef]
- Chang, Y.C.; Schulman, J.N.; Bastard, G.; Guldner, Y. Effects of quasi-interface states in HgTe-CdTe superlattices. Phys. Rev. B 1985, 31, 2557. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757. [Google Scholar] [CrossRef]
- Kou, L.Z.; Wu, S.C.; Felser, C.; Frauenheim, T.; Chen, C.F.; Yan, B.H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448. [Google Scholar] [CrossRef]
- Huang, H.Q.; Duan, W.H. Topological insulator quasi-1D topological insulators. Nat. Mater. 2016, 15, 129. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Cai, X.L.; Yi, S.H.; Chen, L.; Dai, Y.W.; Niu, C.Y.; Guo, Z.X.; Xie, M.H.; Liu, F.; Cho, J.H.; et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101. [Google Scholar] [CrossRef]
- Xian, L.; PerezPaz, A.; Bianco, E.; Ajayan, P.M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003. [Google Scholar] [CrossRef]
- Mahan, G.D.; Sofo, J.O. The best thermoelectric. Proc. Natl. Acad. Sci. USA 1996, 93, 7436. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Bahramy, M.S.; Nagaosa, N.; Nikolic, B.K. Giant thermoelectric effect in graphene-based yopological insulators with heavy adatoms and nanopores. Nano Lett. 2014, 14, 3779. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Sasaki, K.; Nakanishi, T.; Enoki, T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 2010, 11, 054504. [Google Scholar] [CrossRef]
- Areshkin, D.A.; Gunlycke, D.; White, C.T. Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects. Nano Lett. 2007, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.B.; da Silva, A.J.R.; Miwa, R.H.; Fazzio, A. sigma- and pi-defects at graphene nanoribbon edges: Building spin filters. Nano Lett. 2008, 8, 2293. [Google Scholar] [CrossRef]
- Li, T.C.; Lu, S.P. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 2008, 77, 085408. [Google Scholar] [CrossRef]
- Shen, P.-C.; Su, C.; Lin, Y.; Chou, A.-S.; Cheng, C.-C.; Park, J.-H.; Chiu, M.-H.; Lu, A.-Y.; Tang, H.-L.; Tavakoli, M.M.; et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 212. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, H.J.; Ta, X.J.; Lv, H.Y.; Pan, L.; Shi, J.; Tang, X.F. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 2012, 100, 093104. [Google Scholar] [CrossRef]
- Sevincli, H.; Cuniberti, G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 2010, 81, 113401. [Google Scholar] [CrossRef]
- Murphy, P.G.; Moore, J.E. Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 2007, 76, 155313. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, P.; Kheradsoud, S.; Sothmann, B. Optimal quantum interference thermoelectric heat engine with edge States. Phys. Rev. Lett. 2017, 118, 256801. [Google Scholar] [CrossRef]
- Mazzamuto, F.; Hung Nguyen, V.; Apertet, Y.; Caer, C.; Chassat, C.; Saint-Martin, J.; Dollfus, P. Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 2011, 83, 235426. [Google Scholar] [CrossRef]
- Dollfus, P.; Nguyen, V.H.; Saint-Martin, J. Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Matter 2015, 27, 133204. [Google Scholar] [CrossRef]
- Tran, V.T.; Saint-Martin, J.; Dollfus, P. High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering. Nanotechnolgy 2015, 26, 495202. [Google Scholar] [CrossRef]
- Merino-Diez, N.; Garcia-Lekue, A.; Carbonell-Sanroma, E.; Li, J.C.; Corso, M.; Colazzo, L.; Sedona, F.; Sanchez-Portal, D.; Pascual, J.I.; de Oteyza, D.G. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111). ACS Nano 2017, 11, 11661. [Google Scholar] [CrossRef]
- Lee, P.A.; Ramakrishnan, T.V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287. [Google Scholar] [CrossRef]
- Kuo, D.M.T.; Chang, Y.C. Thermoelectric and thermal rectification properties of quantum dot junctions. Phys. Rev. B 2010, 81, 205321. [Google Scholar] [CrossRef]
- Kuo, D.M.T.; Chen, C.C.; Chang, Y.C. Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy. Phys. Rev. B 2017, 95, 075432. [Google Scholar] [CrossRef]
- Suarez, F.; Nozariasbmarz, A.; Vashaee, D.; Ozturk, M.C. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci. 2016, 9, 2099. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, D.M.T.; Chang, Y.-C. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. Nanomaterials 2022, 12, 3357. https://doi.org/10.3390/nano12193357
Kuo DMT, Chang Y-C. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. Nanomaterials. 2022; 12(19):3357. https://doi.org/10.3390/nano12193357
Chicago/Turabian StyleKuo, David M. T., and Yia-Chung Chang. 2022. "Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons" Nanomaterials 12, no. 19: 3357. https://doi.org/10.3390/nano12193357
APA StyleKuo, D. M. T., & Chang, Y.-C. (2022). Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. Nanomaterials, 12(19), 3357. https://doi.org/10.3390/nano12193357