Flexible Transient Resistive Memory Based on Biodegradable Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Device
2.2. Characteristic Test
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tominov, R.V.; Vakulov, Z.E.; Polupanov, N.V.; Saenko, A.V.; Avilov, V.I.; Ageev, O.A.; Smirnov, V.A. Nanoscale-Resistive Switching in Forming-Free Zinc Oxide Memristive Structures. Nanomaterials 2022, 12, 455. [Google Scholar] [CrossRef]
- Zoeteman, B.C.J.; Krikke, H.R.; Venselaar, J. Handling WEEE Waste Flows: On the Effectiveness of Producer Responsibility in a Globalizing World. Int. J. Adv. Manuf. Technol. 2010, 47, 415–436. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Guan, M.; Liu, J.; Lin, H.C.; Pfattner, R.; Shaw, L.; McGuire, A.F.; Huang, T.C.; Shao, L.L.; Cheng, K.T.; et al. Biocompatible and Totally Disintegrable Semiconducting Polymer for Ultrathin and Ultralightweight Transient Electronics. Proc. Natl. Acad. Sci. USA 2017, 114, 5107–5112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, K.K.; Wang, Z.Y.; Dai, J.Q.; Carter, M.; Hu, L.B. Transient Electronics: Materials and Devices. Chem. Mater. 2016, 28, 3527–3539. [Google Scholar] [CrossRef]
- Hwang, S.W.; Song, J.K.; Huang, X.; Cheng, H.Y.; Kang, S.K.; Kim, B.H.; Kim, J.H.; Yu, S.; Huang, Y.G.; Rogers, J.A. High-Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Adv. Mater. 2014, 26, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, B.W.; Ma, X.H.; Hao, Y.; Chen, X.D. Physically Transient Resistive Switching Memory Based on Silk Protein. Small 2016, 12, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.W.; Wang, H.; Sun, J.; Song, F.; Wang, Z.; Yang, M.; Xi, H.; Xie, Y.; Gao, H.X.; Ma, J.G.; et al. Dissolvable and Biodegradable Resistive Switching Memory Based on Magnesium Oxide. IEEE Electron Device Lett. 2016, 37, 990–993. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-based Resistive Switching Memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; et al. Atomic structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory. Nat. Nanotechnol. 2010, 5, 148–153. [Google Scholar] [CrossRef]
- Wang, X.F.; Tian, H.; Zhao, H.M.; Zhang, T.Y.; Mao, W.Q.; Qiao, Y.C.; Pang, Y.; Li, Y.X.; Yang, Y.; Ren, T.L. Interface Engineering with MoS2-Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory. Small 2018, 14, 1702525. [Google Scholar] [CrossRef] [PubMed]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories—Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Yang, Y.C.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.Q.; Lu, W. Observation of Conducting Filament Growth in Nanoscale Resistive Memories. Nat. Commun. 2012, 3, 732. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.O.; Raab, N.; Noyong, M.; Santhanam, V.; Dittmann, R.; Simon, U. Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers. Nanomaterials 2017, 7, 370. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.P.; Xuan, W.P.; Liu, S.T.; Huang, S.Y.; Wang, X.Z.; Dong, S.R.; Jin, H.; Luo, J.K. Biomaterial Gelatin Film Based Crossbar Structure Resistive Switching Devices. IEEE Trans. Nanotechnol. 2018, 17, 78–83. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jian, J.C.; Hsu, Y.L.; Huang, W.Y.; Young, S.J. A Green Strategy for Developing a Self-Healing Gelatin Resistive Memory Device. ACS Appl. Polym. Mater. 2020, 2, 5318–5326. [Google Scholar] [CrossRef]
- Raeis-Hosseini, N.; Lee, J.S. Controlling the Resistive Switching Behavior in Starch-Based Flexible Biomemristors. ACS Appl. Mater. Interfaces 2016, 8, 7326–7332. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Zhou, X.F.; Wang, T.Y.; Shi, X.; Liu, Y.; Zuo, Y.; Xu, L.M.; Wang, M.Y.; Hu, X.F.; Yang, X.J.; et al. Robust DNA-Bridged Memristor for Textile Chips. Angew. Chem. Int. Ed. 2020, 59, 12762–12768. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y.; Dugasani, S.R.; Raza, M.T.; Jeon, Y.R.; Park, S.H.; Choi, C. The Observation of Resistive Switching Characteristics Using Transparent and Biocompatible Cu2+-doped Salmon DNA Composite Thin Film. Nanotechnology 2019, 30, 335203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Shang, J.; Xue, W.H.; Tan, H.W.; Pan, L.; Yang, X.; Guo, S.S.; Hao, J.; Liu, G.; Li, R.W. Convertible Resistive Switching Characteristics Between Memory Switching and Threshold Switching in a Single Ferritin-based Memristor. Chem. Commun. 2016, 52, 4828–4831. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, Y.; Baek, H.; Cho, J. Electrically Bistable Properties of Layer-by-Layer Assembled Multilayers Based on Protein Nanoparticles. ACS Nano 2011, 5, 9918–9926. [Google Scholar] [CrossRef]
- Hosseini, N.R.; Lee, J.S. Resistive Switching Memory Based on Bioinspired Natural Solid Polymer Electrolytes. ACS Nano 2015, 9, 419–426. [Google Scholar] [CrossRef]
- Hosseini, N.R.; Lee, J.S. Biocompatible and Flexible Chitosan-Based Resistive Switching Memory with Magnesium Electrodes. Adv. Funct. Mater. 2015, 25, 5586–5592. [Google Scholar] [CrossRef]
- Chen, Y.S.; Hong, M.Y.; Huang, G.S. A Protein Transistor Made of an Antibody Molecule and Two Gold Nanoparticles. Nat. Nanotechnol. 2012, 7, 197–203. [Google Scholar] [CrossRef] [PubMed]
- de la Rica, R.; Matsui, H. Applications of Peptide and Protein-based Materials in Bionanotechnology. Chem. Soc. Rev. 2010, 39, 3499–3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A Natural Silk Fibroin Protein-Based Transparent Bio-Memristor. Adv. Funct. Mater. 2012, 22, 4493–4499. [Google Scholar] [CrossRef]
- Wang, H.; Meng, F.B.; Cai, Y.R.; Zheng, L.Y.; Li, Y.G.; Liu, Y.J.; Jiang, Y.Y.; Wang, X.T.; Chen, X.D. Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory. Adv. Mater. 2013, 25, 5498–5503. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Yu, H.C.; Huang, C.Y.; Chung, W.L.; Wu, S.L.; Su, Y.K. Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 2015, 5, 10022. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.W.; Wang, C.G.; Huang, C.Y.; Tsai, T.D.; Guo, T.F.; Wen, T.C. Chicken Albumen Dielectrics in Organic Field-Effect Transistors. Adv. Mater. 2011, 23, 4077–4081. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.T.; Chang, P.H.; Chang, Y.C.; Guo, T.F. Lighting Up Ultraviolet Fluorescence from Chicken Albumen Through Plasmon Resonance Energy Transfer of Gold Nanoparticles. Sci. Rep. 2013, 3, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.L.; Zhang, J.; Wang, W.B.; Xuan, W.P.; Wang, X.Z.; Zhang, Q.L.; Smith, C.G.; Luo, J.K. Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 10954–10960. [Google Scholar] [CrossRef] [PubMed]
- Roldan, J.B.; Gonzalez-Cordero, G.; Picos, R.; Miranda, E.; Palumbo, F.; Jimenez-Molinos, F.; Moreno, E.; Maldonado, D.; Baldoma, S.B.; Al Chawa, M.M.; et al. On the Thermal Models for Resistive Random Access Memory Circuit Simulation. Nanomaterials 2021, 11, 1261. [Google Scholar] [CrossRef]
- Jafari, A.; Ghoranneviss, M.; Gholami, M.; Elahi, A.S.; Ghafi, A.K. The Effects of Percent and Position of Nitrogen Atoms on Electronic and Thermoelectric Properties of Graphene Nanoribbons. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1095–1100. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Optical Computing: Status and Perspectives. Nanomaterials 2022, 12, 2171. [Google Scholar] [CrossRef]
- Bokare, A.; Arif, J.; Erogbogbo, F. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. Nanomaterials 2021, 11, 2211. [Google Scholar] [CrossRef]
- Li, F.S.; Kou, L.J.; Chen, W.; Wu, C.X.; Guo, T.L. Enhancing the Short-circuit Current and Power Conversion Efficiency of Polymer Solar Cells with Graphene Quantum Dots Derived from Double-walled Carbon nanotubes. NPG Asia Mater. 2013, 5, e60. [Google Scholar] [CrossRef]
- Shen, J.H.; Zhu, Y.H.; Yang, X.L.; Li, C.Z. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. Chem. Commun. 2012, 48, 3686–3699. [Google Scholar] [CrossRef]
- Ooi, P.C.; Lin, J.; Kim, T.W.; Li, F.S. Tristable Switching of the Electrical Conductivity Through Graphene Quantum Dots Sandwiched in Multi-stacked Poly(Methyl Methacrylate) Layers. Org. Electron. 2016, 38, 379–383. [Google Scholar] [CrossRef]
- Zhou, G.D.; Sun, B.; Hu, X.F.; Sun, L.F.; Zou, Z.; Xiao, B.; Qiu, W.K.; Wu, B.; Li, J.; Han, J.J.; et al. Negative Photoconductance Effect: An Extension Function of the TiOx-Based Memristor. Adv. Sci. 2021, 8, 2003765. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Zhang, Y.K.; Wen, D.Z. Dual-Tunable Memristor Based on Carbon Nanotubes and Graphene Quantum Dots. Nanomaterials 2021, 11, 2043. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, Y.; Zhang, P.; Wen, D. Flexible Transient Resistive Memory Based on Biodegradable Composites. Nanomaterials 2022, 12, 3531. https://doi.org/10.3390/nano12193531
Wang L, Zhang Y, Zhang P, Wen D. Flexible Transient Resistive Memory Based on Biodegradable Composites. Nanomaterials. 2022; 12(19):3531. https://doi.org/10.3390/nano12193531
Chicago/Turabian StyleWang, Lu, Yukai Zhang, Peng Zhang, and Dianzhong Wen. 2022. "Flexible Transient Resistive Memory Based on Biodegradable Composites" Nanomaterials 12, no. 19: 3531. https://doi.org/10.3390/nano12193531
APA StyleWang, L., Zhang, Y., Zhang, P., & Wen, D. (2022). Flexible Transient Resistive Memory Based on Biodegradable Composites. Nanomaterials, 12(19), 3531. https://doi.org/10.3390/nano12193531