Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. On-Surface Synthesis of Non-Benzenoid Nanographenes
3.2. Electronic and Magnetic Characterization of Non-Benzenoid Nanographenes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. New Advances in Nanographene Chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hernandez, Y.; Feng, X.; Müllen, K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 2012, 51, 7640–7654. [Google Scholar] [CrossRef]
- Wu, J.; Pisula, W.; Müllen, K. Graphenes as Potential Material for Electronics. Chem. Rev. 2007, 107, 718–747. [Google Scholar] [CrossRef]
- Zhi, L.; Müllen, K. A Bottom-up Approach from Molecular Nanographenes to Unconventional Carbon Materials. J. Mater. Chem. 2008, 18, 1472. [Google Scholar] [CrossRef]
- Fujii, S.; Enoki, T. Nanographene and Graphene Edges: Electronic Structure and Nanofabrication. Acc. Chem. Res. 2013, 46, 2202–2210. [Google Scholar] [CrossRef]
- Liu, J.; Feng, X. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Angew. Chem. Int. Ed. 2020, 59, 23386–23401. [Google Scholar] [CrossRef]
- Araujo, P.T.; Terrones, M.; Dresselhaus, M.S. Defects and Impurities in Graphene-like Materials. Mater. Today 2012, 15, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Luo, Y.; Li, M.; Hu, G.; Xu, Y.; Tang, T.; Wen, J.; Li, X.; Wang, L. Role of Pyridinic-N for Nitrogen-Doped Graphene Quantum Dots in Oxygen Reaction Reduction. J. Colloid Interface Sci. 2017, 508, 154–158. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, J. Open-Shell Polycyclic Aromatic Hydrocarbons. J. Mater. Chem. 2012, 22, 4151–4160. [Google Scholar] [CrossRef]
- Morita, Y.; Suzuki, S.; Sato, K.; Takui, T. Synthetic Organic Spin Chemistry for Structurally Well-Defined Open-Shell Graphene Fragments. Nat. Chem. 2011, 3, 197–204. [Google Scholar] [CrossRef]
- Das, S.; Wu, J. Polycyclic Hydrocarbons with an Open-Shell Ground State. Phys. Sci. Rev. 2017, 2, 253–288. [Google Scholar] [CrossRef]
- Gryn’ova, G.; Coote, M.L.; Corminboeuf, C. Theory and Practice of Uncommon Molecular Electronic Configurations. WIREs Comput. Mol. Sci. 2015, 5, 440–459. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Gao, H.-Y.; Fuchs, H. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today 2017, 13, 77–96. [Google Scholar] [CrossRef]
- Urgel, J.I.; Hayashi, H.; Di Giovannantonio, M.; Pignedoli, C.A.; Mishra, S.; Deniz, O.; Yamashita, M.; Dienel, T.; Ruffieux, P.; Yamada, H.; et al. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017, 139, 11658–11661. [Google Scholar] [CrossRef]
- Ayani, C.G.; Pisarra, M.; Urgel, J.I.; Jesús Navarro, J.; Díaz, C.; Hayashi, H.; Yamada, H.; Calleja, F.; Miranda, R.; Fasel, R.; et al. Efficient Photogeneration of Nonacene on Nanostructured Graphene. Nanoscale Horiz. 2021, 6, 744–750. [Google Scholar] [CrossRef]
- Krüger, J.; García, F.; Eisenhut, F.; Skidin, D.; Alonso, J.M.; Guitián, E.; Pérez, D.; Cuniberti, G.; Moresco, F.; Peña, D. Decacene: On-Surface Generation. Angew. Chem. 2017, 129, 12107–12110. [Google Scholar] [CrossRef]
- Zuzak, R.; Dorel, R.; Kolmer, M.; Szymonski, M.; Godlewski, S.; Echavarren, A.M. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew. Chem. Int. Ed. 2018, 57, 10500–10505. [Google Scholar] [CrossRef] [Green Version]
- Eisenhut, F.; Kühne, T.; García, F.; Fernández, S.; Guitián, E.; Pérez, D.; Trinquier, G.; Cuniberti, G.; Joachim, C.; Peña, D.; et al. Dodecacene Generated on Surface: Reopening of the Energy Gap. ACS Nano 2020, 14, 1011–1017. [Google Scholar] [CrossRef]
- Urgel, J.I.; Mishra, S.; Hayashi, H.; Wilhelm, J.; Pignedoli, C.A.; Giovannantonio, M.D.; Widmer, R.; Yamashita, M.; Hieda, N.; Ruffieux, P.; et al. On-Surface Light-Induced Generation of Higher Acenes and Elucidation of Their Open-Shell Character. Nat. Commun. 2019, 10, 861. [Google Scholar] [CrossRef]
- Mishra, S.; Xu, K.; Eimre, K.; Komber, H.; Ma, J.; Pignedoli, C.A.; Fasel, R.; Feng, X.; Ruffieux, P. Synthesis and Characterization of [7] Triangulene. Nanoscale 2021, 13, 1624–1628. [Google Scholar] [CrossRef]
- Su, J.; Telychko, M.; Song, S.; Lu, J. Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization. Angew. Chem. Int. Ed. 2020, 59, 7658–7668. [Google Scholar] [CrossRef]
- Xu, X.; Di Giovannantonio, M.; Urgel, J.I.; Pignedoli, C.A.; Ruffieux, P.; Müllen, K.; Fasel, R.; Narita, A. On-Surface Activation of Benzylic C-H Bonds for the Synthesis of Pentagon-Fused Graphene Nanoribbons. Nano Res. 2021, 14, 4754–4759. [Google Scholar] [CrossRef]
- Mishra, S.; Lohr, T.G.; Pignedoli, C.A.; Liu, J.; Berger, R.; Urgel, J.I.; Müllen, K.; Feng, X.; Ruffieux, P.; Fasel, R. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures. ACS Nano 2018, 12, 11917–11927. [Google Scholar] [CrossRef]
- Lohr, T.G.; Urgel, J.I.; Eimre, K.; Liu, J.; Di Giovannantonio, M.; Mishra, S.; Berger, R.; Ruffieux, P.; Pignedoli, C.A.; Fasel, R.; et al. On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. J. Am. Chem. Soc. 2020, 142, 13565–13572. [Google Scholar] [CrossRef]
- Di Giovannantonio, M.; Urgel, J.I.; Beser, U.; Yakutovich, A.V.; Wilhelm, J.; Pignedoli, C.A.; Ruffieux, P.; Narita, A.; Müllen, K.; Fasel, R. On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. J. Am. Chem. Soc. 2018, 140, 3532–3536. [Google Scholar] [CrossRef] [Green Version]
- Di Giovannantonio, M.; Eimre, K.; Yakutovich, A.V.; Chen, Q.; Mishra, S.; Urgel, J.I.; Pignedoli, C.A.; Ruffieux, P.; Müllen, K.; Narita, A.; et al. On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1-b]Fluorene Polymers and Their Lateral Fusion into Porous Ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354. [Google Scholar] [CrossRef] [Green Version]
- Di Giovannantonio, M.; Chen, Q.; Urgel, J.I.; Ruffieux, P.; Pignedoli, C.A.; Müllen, K.; Narita, A.; Fasel, R. On-Surface Synthesis of Oligo(Indenoindene). J. Am. Chem. Soc. 2020, 142, 12925–12929. [Google Scholar] [CrossRef]
- Mishra, S.; Beyer, D.; Eimre, K.; Kezilebieke, S.; Berger, R.; Gröning, O.; Pignedoli, C.A.; Müllen, K.; Liljeroth, P.; Ruffieux, P.; et al. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15, 22–28. [Google Scholar] [CrossRef]
- Mishra, S.; Beyer, D.; Eimre, K.; Liu, J.; Berger, R.; Gröning, O.; Pignedoli, C.A.; Müllen, K.; Fasel, R.; Feng, X.; et al. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019, 141, 10621–10625. [Google Scholar] [CrossRef]
- Mishra, S.; Beyer, D.; Berger, R.; Liu, J.; Groening, O.; Urgel, J.I.; Müllen, K.; Ruffieux, P.; Feng, X.; Fasel, R. Topological Defect-Induced Magnetism in a Nanographene. J. Am. Chem. Soc. 2020, 142, 1147–1152. [Google Scholar] [CrossRef]
- Mishra, S.; Beyer, D.; Eimre, K.; Ortiz, R.; Fernández-Rossier, J.; Berger, R.; Gröning, O.; Pignedoli, C.; Fasel, R.; Feng, X.; et al. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem. Int. Ed. 2020, 59, 12041–12047. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Melidonie, J.; Eimre, K.; Obermann, S.; Gröning, O.; Pignedoli, C.A.; Ruffieux, P.; Feng, X.; Fasel, R. On-Surface Synthesis of Super-Heptazethrene. Chem. Commun. 2020, 56, 7467–7470. [Google Scholar] [CrossRef]
- Mishra, S.; Yao, X.; Chen, Q.; Eimre, K.; Gröning, O.; Ortiz, R.; Di Giovannantonio, M.; Sancho-García, J.C.; Fernández-Rossier, J.; Pignedoli, C.A.; et al. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13, 581–586. [Google Scholar] [CrossRef]
- Gröning, O.; Wang, S.; Yao, X.; Pignedoli, C.A.; Borin Barin, G.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X.; Narita, A.; et al. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature 2018, 560, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Ruffieux, P.; Wang, S.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C.A.; Passerone, D.; et al. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature 2016, 531, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sanz, S.; Castro-Esteban, J.; Vilas-Varela, M.; Friedrich, N.; Frederiksen, T.; Peña, D.; Pascual, J.I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020, 124, 177201. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Xu, C.; Beyer, D.; Yue, X.; Zhao, Y.; Wang, G.; Guan, D.; Li, Y.; Zheng, H.; et al. Designer Spin Order in Diradical Nanographenes. Nat. Commun. 2020, 11, 6076. [Google Scholar] [CrossRef]
- Giessibl, F.J. Atomic Resolution on Si(111)-(7 × 7) by Noncontact Atomic Force Microscopy with a Force Sensor Based on a Quartz Tuning Fork. Appl. Phys. Lett. 2000, 76, 1470–1472. [Google Scholar] [CrossRef]
- Bartels, L.; Meyer, G.; Rieder, K.-H.; Velic, D.; Knoesel, E.; Hotzel, A.; Wolf, M.; Ertl, G. Dynamics of Electron-Induced Manipulation of Individual CO Molecules on Cu(111). Phys. Rev. Lett. 1998, 80, 2004–2007. [Google Scholar] [CrossRef]
- Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. [Google Scholar] [CrossRef] [Green Version]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jiang, K.; Li, C.; Liu, Y.; Xu, C.; Zheng, W.; Guan, D.; Li, Y.; Zheng, H.; Liu, C.; et al. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J. Am. Chem. Soc. 2020, 142, 18532–18540. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, F.; Lehmann, T.; Viertel, A.; Skidin, D.; Krüger, J.; Nikipar, S.; Ryndyk, D.A.; Joachim, C.; Hecht, S.; Moresco, F.; et al. On-Surface Annulation Reaction Cascade for the Selective Synthesis of Diindenopyrene. ACS Nano 2017, 11, 12419–12425. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mishra, S.; Pignedoli, C.A.; Passerone, D.; Urgel, J.I.; Fabrizio, A.; Lohr, T.G.; Ma, J.; Komber, H.; Baumgarten, M.; et al. Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. J. Am. Chem. Soc. 2019, 141, 12011–12020. [Google Scholar] [CrossRef]
- Mallada, B.; de la Torre, B.; Mendieta-Moreno, J.I.; Nachtigallová, D.; Matěj, A.; Matoušek, M.; Mutombo, P.; Brabec, J.; Veis, L.; Cadart, T.; et al. On-Surface Strain-Driven Synthesis of Nonalternant Non-Benzenoid Aromatic Compounds Containing Four- to Eight-Membered Rings. J. Am. Chem. Soc. 2021, 143, 14694–14702. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Sun, Q.; Wang, S.; Barin, G.B.; Dumslaff, B.; Ruffieux, P.; Müllen, K.; Narita, A.; Fasel, R. Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Org. Mater. 2021, 03, 128–133. [Google Scholar] [CrossRef]
- Hapala, P.; Kichin, G.; Wagner, C.; Tautz, F.S.; Temirov, R.; Jelínek, P. Mechanism of High-Resolution STM/AFM Imaging with Functionalized Tips. Phys. Rev. B 2014, 90, 085421. [Google Scholar] [CrossRef] [Green Version]
- Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.; Shiomi, D.; Takui, T.; Kubota, M.; Kobayashi, T.; Yakusi, K.; et al. A Stable Neutral Hydrocarbon Radical: Synthesis, Crystal Structure, and Physical Properties of 2,5,8-Tri-Tert-Butyl-Phenalenyl. J. Am. Chem. Soc. 1999, 121, 1619–1620. [Google Scholar] [CrossRef]
- Pavliček, N.; Mistry, A.; Majzik, Z.; Moll, N.; Meyer, G.; Fox, D.J.; Gross, L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017, 12, 308–311. [Google Scholar] [CrossRef]
- Su, J.; Telychko, M.; Hu, P.; Macam, G.; Mutombo, P.; Zhang, H.; Bao, Y.; Cheng, F.; Huang, Z.-Q.; Qiu, Z.; et al. Atomically Precise Bottom-up Synthesis of π-Extended [5] Triangulene. Sci. Adv. 2019, 5, eaav7717. [Google Scholar] [CrossRef] [Green Version]
- Krejčí, O.; Hapala, P.; Ondráček, M.; Jelínek, P. Principles and Simulations of High-Resolution STM Imaging with a Flexible Tip Apex. Phys. Rev. B 2017, 95, 045407. [Google Scholar] [CrossRef] [Green Version]
- Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Ternes, M.; Heinrich, A.J.; Schneider, W.-D. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys. Condens. Matter 2008, 21, 053001. [Google Scholar] [CrossRef] [PubMed]
- Ternes, M. Probing Magnetic Excitations and Correlations in Single and Coupled Spin Systems with Scanning Tunneling Spectroscopy. Prog. Surf. Sci. 2017, 92, 83–115. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Grande, A.; Urgel, J.I.; Cahlík, A.; Santos, J.; Edalatmanesh, S.; Rodríguez-Sánchez, E.; Lauwaet, K.; Mutombo, P.; Nachtigallová, D.; Nieman, R.; et al. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem. Int. Ed. 2020, 59, 17594–17599. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, K.; Yang, L.; Ma, J.; Sánchez-Grande, A.; Chen, Q.; Lauwaet, K.; Gallego, J.M.; Miranda, R.; Écija, D.; Jelínek, P.; et al. Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. Nanomaterials 2022, 12, 224. https://doi.org/10.3390/nano12020224
Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, et al. Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. Nanomaterials. 2022; 12(2):224. https://doi.org/10.3390/nano12020224
Chicago/Turabian StyleBiswas, Kalyan, Lin Yang, Ji Ma, Ana Sánchez-Grande, Qifan Chen, Koen Lauwaet, José M. Gallego, Rodolfo Miranda, David Écija, Pavel Jelínek, and et al. 2022. "Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes" Nanomaterials 12, no. 2: 224. https://doi.org/10.3390/nano12020224
APA StyleBiswas, K., Yang, L., Ma, J., Sánchez-Grande, A., Chen, Q., Lauwaet, K., Gallego, J. M., Miranda, R., Écija, D., Jelínek, P., Feng, X., & Urgel, J. I. (2022). Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. Nanomaterials, 12(2), 224. https://doi.org/10.3390/nano12020224