Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Calculations
3. Results
3.1. XPS C 1s and F 1s Spectra
3.2. NEXAFS C K-Edge and F K-Edge Spectra
3.3. Electronic State of Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Dubois, M.; Guérin, K.; Hamwi, A.; Vinogradov, A. Nature of C–F Bonds in Fluorinated Carbons. In New Fluorinated Carbons: Fundamentals and Applications; Boltalina, O.V., Nakajima, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 215–243. [Google Scholar]
- Nakajima, T. (Ed.) Fluorine-Carbon and Fluoride-Carbon Materials; CRC Press: Boca Raton, FL, USA, 1994; ISBN 9780429180811. [Google Scholar]
- Yoshida, K.; Sugawara, Y.; Saitoh, M.; Matsumoto, K.; Hagiwara, R.; Matsuo, Y.; Kuwabara, A.; Ukyo, Y.; Ikuhara, Y. Microscopic characterization of the C–F bonds in fluorine–graphite intercalation compounds. J. Power Sources 2020, 445, 227320. [Google Scholar] [CrossRef]
- Panich, A.M. Nuclear magnetic resonance study of fluorine–graphite intercalation compounds and graphite fluorides. Synth. Met. 1999, 100, 169–185. [Google Scholar] [CrossRef]
- Paasonen, V.M.; Nazarov, A.S. Thermal stability of graphite fluoride intercalation compounds. Inorg. Mater. 2001, 37, 452–455. [Google Scholar] [CrossRef]
- Makotchenko, V.G.; Nazarov, A.S.; Yakovlev, I.I. Dicarbon fluoride interclation compounds as new moleculea containers of volitale compounds. Dokl. Chem. 2001, 380, 252–254. [Google Scholar] [CrossRef]
- Makarova, T.L.; Zagaynova, V.S.; Inan, G.; Okotrub, A.V.; Chekhova, G.N.; Pinakov, D.V.; Bulusheva, L.G. Structural Evolution and Magnetic Properties of Underfluorinated C2F. J. Supercond. Nov. Magn. 2012, 25, 79–83. [Google Scholar] [CrossRef]
- Makarova, T.L.; Shelankov, A.L.; Shames, A.I.; Zyrianova, A.A.; Komlev, A.A.; Chekhova, G.N.; Pinakov, D.V.; Bulusheva, L.G.; Okotrub, A.V.; Lähderanta, E. Tabby graphene: Dimensional magnetic crossover in fluorinated graphite. Sci. Rep. 2017, 7, 16544. [Google Scholar] [CrossRef] [Green Version]
- Sysoev, V.I.; Bulavskiy, M.O.; Pinakov, D.V.; Chekhova, G.N.; Asanov, I.P.; Gevko, P.N.; Bulusheva, L.G.; Okotrub, A.V. Chemiresistive properties of imprinted fluorinated graphene films. Materials 2020, 13, 3538. [Google Scholar] [CrossRef] [PubMed]
- Pinakov, D.V.; Chekhova, G.N.; Okotrub, A.V.; Asanov, I.P.; Shubin, Y.V.; Fedorovskaya, E.O.; Plyusnin, P.E.; Bulusheva, L.G. Structure and supercapacitor properties of few-layer low-fluorinated graphene materials. J. Mater. Sci. 2018, 53, 13053–13066. [Google Scholar] [CrossRef]
- Makotchenko, V.G.; Grayfer, E.D.; Mikheev, A.N.; Arzhannikov, A.V.; Saprykin, A.I. Microwave exfoliation of organic-intercalated fluorogaphites. Chem. Commun. 2020, 56, 1895–1898. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Fedorovskaya, E.O.; Senkovskiy, B.V.; Bulusheva, L.G. Nitrogen species in few-layer graphene produced by thermal exfoliation of fluorinated graphite intercalation compounds. Phys. Status Solidi B 2015, 252, 2444–2450. [Google Scholar] [CrossRef]
- Asanov, I.P.; Bulusheva, L.G.; Dubois, M.; Yudanov, N.F.; Alexeev, A.V.; Makarova, T.L.; Okotrub, A.V. Graphene nanochains and nanoislands in the layers of room-temperature fluorinated graphite. Carbon 2013, 59, 518–529. [Google Scholar] [CrossRef]
- Lee, J.H.; Koon, G.K.W.; Shin, D.W.; Fedorov, V.E.; Choi, J.-Y.; Yoo, J.-B.; Özyilmaz, B. Property control of graphene by employing “semi-ionic“ liquid fluorination. Adv. Funct. Mater. 2013, 23, 3329–3334. [Google Scholar] [CrossRef]
- Pinakov, D.V.; Makotchenko, V.G.; Semushkina, G.I.; Chekhova, G.N.; Prosvirin, I.P.; Asanov, I.P.; Fedoseeva, Y.V.; Makarova, A.A.; Shubin, Y.V.; Okotrub, A.V.; et al. Redox reactions between acetonitrile and nitrogen dioxide in the interlayer space of fluorinated graphite matrices. Phys. Chem. Chem. Phys. 2021, 23, 10580–10590. [Google Scholar] [CrossRef]
- Karlický, F.; Otyepka, M. Band gaps and optical spectra from single- and double-layer fluorographene to graphite fluoride: Many-body effects and excitonic states. Ann. Phys. 2014, 526, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, J.; Sun, W.; Wu, D.; Wang, Z.; Fan, Z.; Wang, H.; Han, X.; Yang, S. Tunable photoluminescence and spectrum split from fluorinated to hydroxylated graphene. Nanoscale 2014, 6, 3316–3324. [Google Scholar] [CrossRef]
- Pinakov, D.V.; Logvinenko, V.A. The relationship between properties of fluorinated graphite intercalates and matrix composition. J. Therm. Anal. Calorim. 2006, 86, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Chekhova, G.N.; Pinakov, D.V.; Shubin, Y.V.; Fadeeva, V.P.; Tikhova, V.D.; Okotrub, A.V.; Bulusheva, L.G. Room temperature synthesis of fluorinated graphite intercalation compounds with low fluorine loading of host matrix. J. Fluor. Chem. 2020, 232, 109482. [Google Scholar] [CrossRef]
- Parkes, M.A.; Douglas, K.M.; Price, S.D. Ionization of acetonitrile. Int. J. Mass Spectrom. 2019, 438, 97–106. [Google Scholar] [CrossRef] [Green Version]
- De Ribero, F.A.; Almeida, G.C.; Garcia-Basabe, Y.; Wolff, W.; Boechat-Roberty, H.M.; Rocco, M.L.M. Non-thermal ion desorption from an acetonitrile (CH3CN) astrophysical ice analogue studied by electron stimulated ion desorption. Phys. Chem. Chem. Phys. 2015, 17, 27473–27480. [Google Scholar] [CrossRef]
- Schwell, M.; Jochims, H.-W.; Baumgärtel, H.; Leach, S. VUV photophysics of acetonitrile: Fragmentation, fluorescence and ionization in the 7–22 eV region. Chem. Phys. 2008, 344, 164–175. [Google Scholar] [CrossRef]
- Bulak, M.; Paardekooper, D.M.; Fedoseev, G.; Linnartz, H. Photolysis of acetonitrile in a water-rich ice as a source of complex organic molecules: CH3CN and H2O:CH3CN ices. Astron. Astrophys. 2021, 647, A82. [Google Scholar] [CrossRef]
- Men, S.; Anderson, A.J.; Mayanovic, R.A. In situ Monitoring of Synchrotron X-Ray-Induced Radiolysis Effects on Chromium Species Using X-Ray Absorption Spectroscopy. J. Appl. Spectrosc. 2017, 84, 342–345. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Wang, C.-H.; Hwu, Y.-K.; Je, J.-H. Synchrotron X-ray synthesis of colloidal gold particles for drug delivery. Mater. Chem. Phys. 2006, 100, 72–76. [Google Scholar] [CrossRef]
- Kaito, C.; Kimura, Y.; Hanamoto, K.; Sasaki, M.; Kimura, S.; Nakada, T.; Saito, Y.; Koike, C.; Nakayama, Y. Carbyne formation be synchrotron radiation. Nuclear Instrum. Methods Phys. Res. A 2001, 467–468, 1217–1220. [Google Scholar] [CrossRef]
- Sedelnikova, O.; Gurova, O.; Makarova, A.; Fedorenko, A.; Nikolenko, A.; Plyusnin, P.; Arenal, R.; Bulusheva, L.; Okotrub, A. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials 2020, 10, 818. [Google Scholar] [CrossRef]
- Prezioso, S.; Perrozzi, F.; Donarelli, M.; Stagnini, E.; Treossi, E.; Palermo, V.; Santucci, S.; Nardone, M.; Moras, P.; Ottaviano, L. Dose and wavelength dependent study of graphene oxide photoreduction with VUV Synchrotron radiation. Carbon 2014, 79, 478–485. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 2010, 82, 195436. [Google Scholar] [CrossRef] [Green Version]
- Makarova, T.L.; Shelankov, A.L.; Zyrianova, A.A.; Veinger, A.I.; Tisnek, T.V.; Lähderanta, E.; Shames, A.I.; Okotrub, A.V.; Bulusheva, L.G.; Chekhova, G.N.; et al. Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Sci. Rep. 2015, 5, 13382. [Google Scholar] [CrossRef] [Green Version]
- Bulusheva, L.G.; Okotrub, A.V.; Shnitov, V.V.; Bryzgalov, V.V.; Boltalina, O.V.; Gol’dt, I.V.; Vyalikh, D.V. Electronic structure of C60F36 studied by quantum-chemical modeling of experimental photoemission and x-ray absorption spectra. J. Chem. Phys. 2009, 130, 014704. [Google Scholar] [CrossRef]
- Poe, B.; Seifert, F.; Sharp, T.; Wu, Z. ELNES spectroscopy of mixed Si coordination minerals. Phys. Chem. Miner. 1997, 24, 477–487. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Asanov, I.P.; Yudanov, N.F.; Babin, K.S.; Gusel’nikov, A.V.; Nedoseikina, T.I.; Gevko, P.N.; Bulusheva, L.G.; Osváth, Z.; Biró, L.P. Development of graphene layers by reduction of graphite fluoride C2F surface. Phys. Status Solidi B 2009, 246, 2545–2548. [Google Scholar] [CrossRef]
- Aseeva, E.A.; Pinakov, D.V.; Oglezneva, I.M.; Chekhova, G.N.; Mazalov, L.N.; Shubin, Y.V. X-ray photoelectron spectroscopy study of intercalated compounds of fluorinated graphite C2FxBr0.01·yCH3CN. J. Struct. Chem. 2006, 47, 930–938. [Google Scholar] [CrossRef]
- Tressaud, A.; Moguet, F.; Flandrois, S.; Chambon, M.; Guimon, C.; Nanse, G.; Papirer, E.; Gupta, V.; Bahl, O.P. On the nature of C–F bonds in various fluorinated carbon materials: XPS and TEM investigations. J. Phys. Chem. Solids 1996, 57, 745–751. [Google Scholar] [CrossRef]
- Lavskaya, Y.V.; Bulusheva, L.G.; Okotrub, A.V.; Yudanov, N.F.; Vyalikh, D.V.; Fonseca, A. Comparative study of fluorinated single- and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy. Carbon 2009, 47, 1629–1636. [Google Scholar] [CrossRef]
- Bittencourt, C.; Van Lier, G.; Ke, X.; Suarez-Martinez, I.; Felten, A.; Ghijsen, J.; Van Tendeloo, G.; Ewels, C.P. Spectroscopy and defect identification for fluorinated carbon nanotubes. ChemPhysChem 2009, 10, 920–925. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Yudanov, N.F.; Asanov, I.P.; Vyalikh, D.V.; Bulusheva, L.G. Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angle-resolved X-ray absorption spectroscopy. ACS Nano 2013, 7, 65–74. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Okotrub, A.V. Electronic Structure of Fluorinated Graphene. In New Fluorinated Carbons: Fundamentals and Applications; Boltalina, O.V., Nakajima, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 177–213. [Google Scholar]
- Bakharev, P.V.; Huang, M.; Saxena, M.; Lee, S.W.; Joo, S.H.; Park, S.O.; Dong, J.; Camacho-Mojica, D.C.; Jin, S.; Kwon, Y.; et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 2020, 15, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, M.; Dubois, M.; Batisse, N.; Hajjar-Garreau, S.; Simon, L. Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite. Dalt. Trans. 2018, 47, 4596–4606. [Google Scholar] [CrossRef]
- Zhou, S.; Sherpa, S.D.; Hess, D.W.; Bongiorno, A. Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 2014, 118, 26402–26408. [Google Scholar] [CrossRef]
- Struzzi, C.; Scardamaglia, M.; Reckinger, N.; Sezen, H.; Amati, M.; Gregoratti, L.; Colomer, J.-F.; Ewels, C.; Snyders, R.; Bittencourt, C. Probing plasma fluorinated graphene via spectromicroscopy. Phys. Chem. Chem. Phys. 2017, 19, 31418–31428. [Google Scholar] [CrossRef]
- Fischer, D.A.; Wentzcovitch, R.M.; Carr, R.G.; Continenza, A.; Freeman, A.J. Graphitic interlayer states: A carbon K near-edge X-ray-absorption fine-structure study. Phys. Rev. B 1991, 44, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Batson, P.E. Carbon 1 s near-edge-absorption fine structure in graphite. Phys. Rev. B 1993, 48, 2608–2610. [Google Scholar] [CrossRef]
- Brühwiler, P.A.; Maxwell, A.J.; Puglia, C.; Nilsson, A.; Andersson, S.; Mårtensson, N. π* and σ* excitons in C 1s absorption of graphite. Phys. Rev. Lett. 1995, 74, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Pan, D.; Lao, M.; Liang, S.; Huang, D.; Zhou, W.; Guo, J. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy. Appl. Surf. Sci. 2017, 404, 1–6. [Google Scholar] [CrossRef]
- Ahmad, Y.; Dubois, M.; Guérin, K.; Hamwi, A.; Fawal, Z.; Kharitonov, A.P.; Generalov, A.V.; Klyushin, A.Y.; Simonov, K.A.; Vinogradov, N.A.; et al. NMR and NEXAFS study of various graphite fluorides. J. Phys. Chem. C 2013, 117, 13564–13572. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Okotrub, A.V.; Yudanov, N.F. Atomic arrangement and electronic structure of graphite fluoride C2F. Phys. Low-Dimensional Struct. 2002, 7, 1–14. [Google Scholar]
- Kiuchi, H.; Kondo, T.; Sakurai, M.; Guo, D.; Nakamura, J.; Niwa, H.; Miyawaki, J.; Kawai, M.; Oshima, M.; Harada, Y. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering. Phys. Chem. Chem. Phys. 2016, 18, 458–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedoseeva, Y.V.; Okotrub, A.V.; Asanov, I.P.; Pinakov, D.V.; Chekhova, G.N.; Tur, V.A.; Plyusnin, P.E.; Vyalikh, D.V.; Bulusheva, L.G. Nitrogen inserting in fluorinated graphene via annealing of acetonitrile intercalated graphite fluoride. Phys. Status Solidi B 2014, 251, 2530–2535. [Google Scholar] [CrossRef]
- Leinweber, P.; Kruse, J.; Walley, F.L.; Gillespie, A.; Eckhardt, K.-U.; Blyth, R.I.R.; Regier, T. Nitrogen K -edge XANES—An overview of reference compounds used to identify ‘unknown’ organic nitrogen in environmental samples. J. Synchrotron Radiat. 2007, 14, 500–511. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Okotrub, A.V.; Kudashov, A.G.; Shubin, Y.V.; Shlyakhova, E.V.; Yudanov, N.F.; Pazhetnov, E.M.; Boronin, A.I.; Vyalikh, D.V. Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes. Carbon 2008, 46, 864–869. [Google Scholar] [CrossRef]
- Gillespie, A.W.; Walley, F.L.; Farrell, R.E.; Regier, T.Z.; Blyth, R.I.R. Calibration method at the N K -edge using interstitial nitrogen gas in solid-state nitrogen-containing inorganic compounds. J. Synchrotron Radiat. 2008, 15, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Vyalikh, A.; Bulusheva, L.G.; Chekhova, G.N.; Pinakov, D.V.; Okotrub, A.V.; Scheler, U. Fluorine patterning in room-temperature fluorinated graphite determined by solid-state NMR and DFT. J. Phys. Chem. C 2013, 117, 7940–7948. [Google Scholar] [CrossRef]
- ADF 2020.1. SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Hait, D.; Head-Gordon, M. Highly accurate prediction of core spectra of molecules at density functional theory cost: Attaining sub-electronvolt error from a restricted open-shell Kohn–Sham approach. J. Phys. Chem. Lett. 2020, 11, 775–786. [Google Scholar] [CrossRef] [PubMed]
Exposure Time, s | C | F | N | O | C–CF/C–F |
---|---|---|---|---|---|
CH3CN@CF0.3 | |||||
0 | 83 | 13 | 1 | 3 | 1.9 |
80 | 98 | <1 | <1 | <1 | 1.8 |
200 | 98 | <1 | <1 | <1 | 1.9 |
CH3CN@CF0.5 | |||||
0 | 71 | 26 | 2 | 1 | 1.0 |
80 | 90 | 6 | 3 | 1 | 2.0 |
200 | 95 | 3 | 2 | <1 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semushkina, G.I.; Fedoseeva, Y.V.; Makarova, A.A.; Smirnov, D.A.; Asanov, I.P.; Pinakov, D.V.; Chekhova, G.N.; Okotrub, A.V.; Bulusheva, L.G. Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation. Nanomaterials 2022, 12, 231. https://doi.org/10.3390/nano12020231
Semushkina GI, Fedoseeva YV, Makarova AA, Smirnov DA, Asanov IP, Pinakov DV, Chekhova GN, Okotrub AV, Bulusheva LG. Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation. Nanomaterials. 2022; 12(2):231. https://doi.org/10.3390/nano12020231
Chicago/Turabian StyleSemushkina, Galina I., Yuliya V. Fedoseeva, Anna A. Makarova, Dmitry A. Smirnov, Igor P. Asanov, Dmitry V. Pinakov, Galina N. Chekhova, Alexander V. Okotrub, and Lyubov G. Bulusheva. 2022. "Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation" Nanomaterials 12, no. 2: 231. https://doi.org/10.3390/nano12020231
APA StyleSemushkina, G. I., Fedoseeva, Y. V., Makarova, A. A., Smirnov, D. A., Asanov, I. P., Pinakov, D. V., Chekhova, G. N., Okotrub, A. V., & Bulusheva, L. G. (2022). Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation. Nanomaterials, 12(2), 231. https://doi.org/10.3390/nano12020231