Corrugations in Free-Standing Graphene
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Yu, L.; Lee, Y.H.; Shi, Y.; Hsu, A.; Chin, M.L.; Li, L.J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.W.; Suh, J.M.; Jang, H.W. Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid. Front. Chem. 2019, 7, 708. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Zhu, Z.; Zhong, Y.; Bando, Y.; Golberg, D.; Yao, J.; Wang, X. The role of geometric sites in 2D materials for energy storage. Joule 2018, 2, 1075–1094. [Google Scholar] [CrossRef] [Green Version]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055. [Google Scholar] [CrossRef]
- Zhu, W.; Low, T.; Perebeinos, V.; Bol, A.A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436. [Google Scholar] [CrossRef] [Green Version]
- Tapasztó, L.; Dumitrică, T.; Kim, S.J.; Nemes-Incze, P.; Hwang, C.; Biró, L.P. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 2012, 8, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; He, W.Y.; Chu, Z.D.; Liu, M.; Meng, L.; Dou, R.F.; Zhang, Y.; Liu, Z.; Nie, J.C.; He, L. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 2013, 4, 2159. [Google Scholar] [CrossRef] [Green Version]
- Schiefele, J.; Martin-Moreno, L.; Guinea, F. Faraday effect in rippled graphene: Magneto-optics and random gauge fields. Phys. Rev. B 2016, 94, 035401. [Google Scholar] [CrossRef]
- Vasić, B.; Zurutuza, A.; Gajić, R. Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon 2016, 102, 304–310. [Google Scholar] [CrossRef]
- Liang, T.; He, G.; Wu, X.; Ren, J.; Guo, H.; Kong, Y.; Iwai, H.; Fujita, D.; Gao, H.; Guo, H.; et al. Permeation through graphene ripples. 2D Mater. 2017, 4, 025010. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 1–17. [Google Scholar] [CrossRef]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Qu, A.C.; Nigge, P.; Link, S.; Levy, G.; Michiardi, M.; Spandar, P.L.; Matthé, T.; Schneider, M.; Zhdanovich, S.; Starke, U.; et al. Ubiquitous defect-induced density wave instability in monolayer graphene. Sci. Adv. 2022, 8, eabm5180. [Google Scholar] [CrossRef] [PubMed]
- Mamiyev, Z.; Tegenkamp, C. Sn intercalation into the BL/SiC(0001) interface: A detailed SPA-LEED investigation. Surfaces Interfaces 2022, 34, 102304. [Google Scholar] [CrossRef]
- Eder, F.R.; Kotakoski, J.; Holzweber, K.; Mangler, C.; Skakalova, V.; Meyer, J.C. Probing from Both Sides: Reshaping the Graphene Landscape via Face-to-Face Dual-Probe Microscopy. Nano Lett. 2013, 13, 1934–1940. [Google Scholar] [CrossRef]
- Breitwieser, R.; Hu, Y.C.; Chao, Y.C.; Li, R.J.; Tzeng, Y.R.; Li, L.J.; Liou, S.C.; Lin, K.C.; Chen, C.W.; Pai, W.W. Flipping Nanoscale Ripples of Free-Standing Graphene Using a Scanning Tunneling Microscope Tip. Carbon 2014, 77, 236–243. [Google Scholar] [CrossRef]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef]
- Kirilenko, D.A.; Dideykin, A.T.; Van Tendeloo, G. Measuring the corrugation amplitude of suspended and supported graphene. Phys. Rev. B 2011, 84, 235417. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, J.D.; Gunst, T.; Gregersen, S.S.; Gammelgaard, L.; Jessen, B.S.; Mackenzie, D.M.A.; Watanabe, K.; Taniguchi, T.; Bøggild, P.; Booth, T.J. Suppression of intrinsic roughness in encapsulated graphene. Phys. Rev. B 2017, 96, 014101. [Google Scholar] [CrossRef] [Green Version]
- Ludacka, U.; Monazam, M.R.A.; Rentenberger, C.; Friedrich, M.; Stefanelli, U.; Meyer, J.C.; Kotakoski, J. In situ control of graphene ripples and strain in the electron microscope. npj 2D Mater. Appl. 2018, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Tsen, A.W.; Brown, L.; Levendorf, M.P.; Ghahari, F.; Huang, P.Y.; Havener, R.W.; Ruiz-Vargas, C.S.; Muller, D.A.; Kim, P.; Park, J. Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene. Science 2012, 336, 1143–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, A.W.; Duong, D.L.; Nguyen, V.L.; Van Tuan, D.; Kotakoski, J.; Barrios Vargas, J.E.; Lee, Y.H.; Roche, S. Charge Transport in Polycrystalline Graphene: Challenges and Opportunities. Adv. Mater. 2014, 26, 5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.H.; Cooper, R.C.; An, S.J.; Lee, S.; Van Der Zande, A.; Petrone, N.; Hammerberg, A.G.; Lee, C.; Crawford, B.; Oliver, W.; et al. High-strength chemical-vapor–deposited graphene and grain boundaries. Science 2013, 340, 1073–1076. [Google Scholar] [CrossRef]
- Singh, A.K.; Hennig, R.G. Scaling relation for thermal ripples in single and multilayer graphene. Phys. Rev. B 2013, 87, 094112. [Google Scholar] [CrossRef]
- Leuthner, G.T.; Hummel, S.; Mangler, C.; Pennycook, T.J.; Susi, T.; Meyer, J.C.; Kotakoski, J. Scanning transmission electron microscopy under controlled low-pressure atmospheres. Ultramicroscopy 2019, 203, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Leuthner, G.T.; Susi, T.; Mangler, C.; Meyer, J.C.; Kotakoski, J. Chemistry at graphene edges in the electron microscope. 2D Mater. 2021, 8, 035023. [Google Scholar] [CrossRef]
- Singh, R.; Scheinecker, D.; Ludacka, U.; Kotakoski, J. Electron Microscopy Images and Tilt Series of Electron Diffraction Patterns. 2022. PHAIDRA Repository of the University of Vienna. Available online: https://phaidra.univie.ac.at/detail/o:1603896 (accessed on 29 September 2022).
Type | Size (m) | (Å) | () | (nm) |
---|---|---|---|---|
Exfoliated | ||||
CVD | ||||
CVD | ||||
CVD | ||||
Exfoliated [20] | 1.0 | - | 5.0 | 25 |
Exfoliated [22] | - | - | - | |
Exfoliated [23] | - | - | 6.3 | - |
CVD [21] | - | 1.7 | 6.0 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Scheinecker, D.; Ludacka, U.; Kotakoski, J. Corrugations in Free-Standing Graphene. Nanomaterials 2022, 12, 3562. https://doi.org/10.3390/nano12203562
Singh R, Scheinecker D, Ludacka U, Kotakoski J. Corrugations in Free-Standing Graphene. Nanomaterials. 2022; 12(20):3562. https://doi.org/10.3390/nano12203562
Chicago/Turabian StyleSingh, Rajendra, Daniel Scheinecker, Ursula Ludacka, and Jani Kotakoski. 2022. "Corrugations in Free-Standing Graphene" Nanomaterials 12, no. 20: 3562. https://doi.org/10.3390/nano12203562
APA StyleSingh, R., Scheinecker, D., Ludacka, U., & Kotakoski, J. (2022). Corrugations in Free-Standing Graphene. Nanomaterials, 12(20), 3562. https://doi.org/10.3390/nano12203562