Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface
Abstract
:1. Introduction
2. Design and Methods
3. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Details of Simulation Set-Up
References
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Chen, H.T.; Taylor, A.J.; Yu, N.F. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, L.Q.; Wang, Z.J.; Maturi, R.; Zheng, B.; Wang, H.P.; Yang, Y.H.; Shen, L.; Hao, R.; Yin, W.Y.; Li, E.P.; et al. Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection. Laser Photonics Rev. 2017, 11, 1700115. [Google Scholar] [CrossRef]
- Fan, Q.B.; Huo, P.C.; Wang, D.P.; Liang, Y.Z.; Yan, F.; Xu, T. Visible Light Focusing Flat Lenses Based on Hybrid Dielectric-Metal Metasurface Reflector-Arrays. Sci. Rep. 2017, 7, 45044. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.W.; Li, X.K.; Pan, W.K.; Zhou, J.; Jiang, T.; Ding, F. High-Efficiency Broadband Vortex Beam Generator Based on Transmissive Metasurface. Opt. Express 2019, 27, 4281–4291. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.J.; Kildishev, A.V.; Shalaev, V.M. Metasurface Holograms for Visible Light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.W.; Gao, J.; Yang, X.D. Metasurface Holograms for Holographic Imaging. Adv. Opt. Mater. 2017, 5, 1700541. [Google Scholar] [CrossRef]
- Zheng, G.X.; Muhlenbernd, H.; Kenney, M.; Li, G.X.; Zentgraf, T.; Zhang, S. Metasurface Holograms Reaching 80% Efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Zhu, H.L.; Cheung, S.W.; Chung, K.L.; Yuk, T.I. Linear-to-Circular Polarization Conversion Using Metasurface. IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.L.; Wu, Y.F.; Chen, S.R.; Liao, S.W.; Zhang, H.L.; Xie, C.Q.; Chan, M.S. Phase Change Induced Active Metasurface Devices for Dynamic Wavefront Control. J. Phys. D-Appl. Phys. 2020, 53, 204001. [Google Scholar] [CrossRef]
- Cheng, Q.Q.; Ma, M.L.; Yu, D.; Shen, Z.X.; Xie, J.Y.; Wang, J.C.; Xu, N.X.; Guo, H.M.; Hu, W.; Wang, S.M.; et al. Broadband Achromatic Metalens in Terahertz Regime. Sci. Bull. 2019, 64, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.; Moazami, A.; Naserpour, M.; Zapata-Rodriguez, C.J. A Broadband Multifocal Metalens in the Terahertz Frequency Range. Opt. Commun. 2016, 370, 306–310. [Google Scholar] [CrossRef]
- He, J.W.; Dong, T.; Chi, B.H.; Zhang, Y. Metasurfaces for Terahertz Wavefront Modulation: A Review. J. Infrared Millim. Terahertz Waves 2020, 41, 607–631. [Google Scholar] [CrossRef] [Green Version]
- Shaltout, A.M.; Kildishev, A.V.; Shalaev, V.M. Evolution of Photonic Metasurfaces: From Static to Dynamic. J. Opt. Soc. Am. B-Opt. Phys. 2016, 33, 501–510. [Google Scholar] [CrossRef]
- Pinaud, M.; Humbert, G.; Engelbrecht, S.; Merlat, L.; Fischer, B.M.; Crunteanu, A. Terahertz Devices Using the Optical Activation of Gete Phase Change Materials: Toward Fully Reconfigurable Functionalities. ACS Photonics 2021, 8, 3272–3281. [Google Scholar] [CrossRef]
- Chen, J.J.; Chen, X.Y.; Tian, Z. Switchable Chiral Metasurface for Terahertz Anomalous Reflection Based on Phase Change Material. Appl. Sci. 2022, 12, 932. [Google Scholar] [CrossRef]
- Xu, M.; Wei, S.J.; Wu, S.; Pei, F.; Li, J.; Wang, S.Y.; Chen, L.Y.; Jia, Y. Theoretical and Experimental Investigations of the Optical Properties of Ge2Sb2Te5 for Multi-State Optical Data Storage. J. Korean Phys. Soc. 2008, 53, 2265–2269. [Google Scholar] [CrossRef]
- Wang, Q.; Rogers, E.T.F.; Gholipour, B.; Wang, C.M.; Yuan, G.H.; Teng, J.H.; Zheludev, N.I. Optically Reconfigurable Metasurfaces and Photonic Devices Based on Phase Change Materials. Nat. Photonics 2016, 10, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.F.; Yu, D.W.; Li, G.S.; Lin, M.T.; Bian, L.A. Terahertz Metamaterial Modulator Based on Phase Change Material VO2. Symmetry 2021, 13, 2230. [Google Scholar] [CrossRef]
- Yamada, N. Origin, Secret, and Application of the Ideal Phase-Change Material Gesbte. Phys. Status Solidi B-Basic Solid State Phys. 2012, 249, 1837–1842. [Google Scholar] [CrossRef]
- Zhou, K.; Nan, J.Y.; Shen, J.B.; Li, Z.P.; Cao, J.C.; Song, Z.T.; Zhu, M.; He, B.Q.; Yan, M.; Zeng, H.P.; et al. Phase Change of Ge2Sb2Te5 under Terahertz Laser Illumination. APL Mater. 2021, 9, 101113. [Google Scholar] [CrossRef]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-Change Materials for Non-Volatile Photonic Applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Du, K.K.; Li, Q.; Lyu, Y.B.; Ding, J.C.; Lu, Y.; Cheng, Z.Y.; Qiu, M. Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material Gst. Light-Sci. Appl. 2017, 6, e16194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, P.; Wright, C.D.; Bhaskaran, H. An Optoelectronic Framework Enabled by Low-Dimensional Phase-Change Films. Nature 2014, 511, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, A.K.U.; Zalden, P.; Chigrin, D.N.; Wuttig, M.; Lindenberg, A.M.; Taubner, T. Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses. ACS Photonics 2014, 1, 833–839. [Google Scholar] [CrossRef]
- Shu, M.J.; Zalden, P.; Chen, F.; Weems, B.; Chatzakis, I.; Xiong, F.; Jeyasingh, R.; Hoffmann, M.C.; Pop, E.; Wong, H.S.P.; et al. Ultrafast Terahertz-Induced Response of Gesbte Phase-Change Materials. Appl. Phys. Lett. 2014, 104, 251907. [Google Scholar] [CrossRef]
- Shimakawa, K.; Kadlec, F.; Kadlec, C.; Prikryl, J.; Wagner, T.; Frumar, M.; Kasap, S. Effects of Grain Boundaries on Thz Conductivity in the Crystalline States of Ge2Sb2Te5 Phase-Change Materials: Correlation with Dc Loss. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2000411. [Google Scholar] [CrossRef]
- Qu, Y.R.; Li, Q.; Du, K.K.; Cai, L.; Lu, J.; Qiu, M. Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material Gst. Laser Photonics Rev. 2017, 11, 1700091. [Google Scholar] [CrossRef]
- Liu, X.Q.; Bai, B.F.; Chen, Q.D.; Sun, H.B. Etching-Assisted Femtosecond Laser Modification of Hard Materials. Opto-Electron. Adv. 2019, 2, 190021. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Charola, S.; Kumar, R.S.; Parmar, J. Broadband Polarization-Insensitive Jerusalem-Shaped Metasurface Absorber Based on Phase-Change Material for the Visible Region. Phys. B-Condens. Matter 2022, 624, 413440. [Google Scholar] [CrossRef]
- Choi, C.; Lee, S.Y.; Mun, S.E.; Lee, G.Y.; Sung, J.; Yun, H.; Yang, J.H.; Kim, H.O.; Hwang, C.Y.; Lee, B. Metasurface with Nanostructured Ge2sb2te5 as a Platform for Broadband-Operating Wavefront Switch. Adv. Opt. Mater. 2019, 7, 1900171. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.J.; Landreman, P.; Brongersma, M.L. An over-Coupled Phase-Change Metasurface for Efficient Reflection Phase Modulation. Adv. Opt. Mater. 2020, 8, 2000745. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Shi, S.Y.; Wang, J.J.; Fang, Q.H.; Li, M.H.; Dong, J.F. Linear Optical Switch Metasurface Composed of Cross-Shaped Nano-Block and Ge2Sb2Te5 Film. Opt. Commun. 2021, 498, 127222. [Google Scholar] [CrossRef]
- Lin, Q.W.; Wong, H.; Huitema, L.; Crunteanu, A. Coding Metasurfaces with Reconfiguration Capabilities Based on Optical Activation of Phase-Change Materials for Terahertz Beam Manipulations. Adv. Opt. Mater. 2022, 10, 2101699. [Google Scholar] [CrossRef]
- Zhang, S.J.; Chen, X.Y.; Liu, K.; Li, H.Y.; Xu, Y.H.; Jiang, X.H.; Wang, Q.W.; Cao, T.; Tian, Z. Nonvolatile Reconfigurable Dynamic Janus Metasurfaces in the Terahertz Regime. Photonics Res. 2022, 10, 1731–1743. [Google Scholar] [CrossRef]
- Chen, Z.B.; Deng, H.; Xiong, Q.X.; Liu, C. Phase Gradient Metasurface with Broadband Anomalous Reflection Based on Cross-Shaped Units. Appl. Phys. A-Mater. Sci. Process. 2018, 124, 281. [Google Scholar] [CrossRef]
- Hardy, W.; Whitehead, L. Split-Ring Resonator for Use in Magnetic Resonance from 200–2000 Mhz. Rev. Sci. Instrum. 1981, 52, 213–216. [Google Scholar] [CrossRef]
- Yu, N.F.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Makino, K.; Kato, K.; Saito, Y.; Fons, P.; Kolobov, A.V.; Tominaga, J.; Nakano, T.; Nakajima, M. Terahertz Spectroscopic Characterization of Ge2Sb2Te5 Phase Change Materials for Photonics Applications. J. Mater. Chem. C 2019, 7, 8209–8215. [Google Scholar] [CrossRef]
- Pitchappa, P.; Kumar, A.; Prakash, S.; Jani, H.; Venkatesan, T.; Singh, R. Chalcogenide Phase Change Material for Active Terahertz Photonics. Adv. Mater. 2019, 31, 1808157. [Google Scholar] [CrossRef]
- Zhang, M.; Pu, M.B.; Zhang, F.; Guo, Y.H.; He, Q.; Ma, X.L.; Huang, Y.J.; Li, X.; Yu, H.L.; Luo, X.G. Plasmonic Metasurfaces for Switchable Photonic Spin-Orbit Interactions Based on Phase Change Materials. Adv. Sci. 2018, 5, 1800835. [Google Scholar] [CrossRef]
- Zhu, R.C.; Zhang, Z.T.; Wang, J.F.; Xu, C.L.; Sui, S.; Wang, X.F.; Liu, T.H.; Zhu, Y.; Zhang, L.; Wang, J.; et al. Genetic-Algorithm-Empowered Metasurface Design: Simultaneous Realization of High Microwave Frequency-Selection and Low Infrared Surface-Emissivity. Opt. Express 2021, 29, 20150–20159. [Google Scholar] [CrossRef]
- Xu, Z.; Sheng, H.; Wang, Q.; Zhou, L.; Shen, Y. Terahertz Broadband Polarization Converter Based on the Double-Split Ring Resonator Metasurface. SN Appl. Sci. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Li, C.Y.; Chang, C.C.; Zhou, Q.L.; Zhang, C.L.; Chen, H.T. Resonance Coupling and Polarization Conversion in Terahertz Metasurfaces with Twisted Split-Ring Resonator Pairs. Opt. Express 2017, 25, 25842–25852. [Google Scholar] [CrossRef]
- Luo, X.G. Principles of Electromagnetic Waves in Metasurfaces. Sci. China-Phys. Mech. Astron. 2015, 58, 594201. [Google Scholar] [CrossRef]
- Luo, X.G. Subwavelength Optical Engineering with Metasurface Waves. Adv. Opt. Mater. 2018, 6, 1701201. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.Q.; Xu, Y.H.; Tian, Z.; Gu, J.Q.; Yue, W.S.; Zhang, S.; Han, J.G.; Zhang, W.L. A Broadband Metasurface-Based Terahertz Flat-Lens Array. Adv. Opt. Mater. 2015, 3, 779–785. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Dong, P.; Wang, Y.; Wang, B.; Yang, L.; Wu, R.; Hou, W.; Zhang, J. Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface. Nanomaterials 2022, 12, 3592. https://doi.org/10.3390/nano12203592
Zhang M, Dong P, Wang Y, Wang B, Yang L, Wu R, Hou W, Zhang J. Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface. Nanomaterials. 2022; 12(20):3592. https://doi.org/10.3390/nano12203592
Chicago/Turabian StyleZhang, Ming, Peng Dong, Yu Wang, Baozhu Wang, Lin Yang, Ruihong Wu, Weimin Hou, and Junyao Zhang. 2022. "Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface" Nanomaterials 12, no. 20: 3592. https://doi.org/10.3390/nano12203592
APA StyleZhang, M., Dong, P., Wang, Y., Wang, B., Yang, L., Wu, R., Hou, W., & Zhang, J. (2022). Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface. Nanomaterials, 12(20), 3592. https://doi.org/10.3390/nano12203592